Sensor‐driven autonomous underwater inspections: A receding‐horizon RRT‐based view planning solution for AUVs

运动规划 概率逻辑 水下 实时计算 树(集合论) 计算机科学 声纳 路径(计算) 随机树 节点(物理) 人工智能 工程类 机器人 地理 计算机网络 结构工程 数学分析 考古 数学
作者
Leonardo Zacchini,Matteo Franchi,Alessandro Ridolfi
出处
期刊:Journal of Field Robotics [Wiley]
卷期号:39 (5): 499-527 被引量:37
标识
DOI:10.1002/rob.22061
摘要

Abstract Autonomous Underwater Vehicles (AUVs) are used by the scientific community for various applications, from collecting well‐distributed high‐quality data to mapping the seafloor or exploring unknown areas. Nonpredictable environmental conditions and sensor acquisitions make the design of AUV surveys challenging even for expert operators. Multiple attempts are required, and the collected data quality is not guaranteed: The AUV passively stores the sensors' acquisitions that are then analyzed offline after its recovery. In Forward‐Looking SONAR (FLS) seabed inspections, the vehicle follows lawnmower paths designed by an expert operator that considers the sensor characteristics. The performance of FLSs is affected by several environmental conditions and possible protruding objects. This paper presents a probabilistic framework for FLS‐based seabed inspections that endow the AUV with the ability to autonomously conducting the survey and ensure adequate coverage of the target area. A three‐dimensional probabilistic occupancy mapping system for FLS reconstructions to update the covered area map was developed. The map is used by the Coverage Path Planning (CPP) algorithm to evaluate the visibility of the viewpoints that are generated as nodes of a random tree. The Next‐Best Viewpoint (NBV) is selected as the first node in the branch expected to collect more data, and the path to reach the NBV is computed using the rapidly exploring random tree (RRT*) algorithm. The sensor‐driven coverage approach is used in a receding‐horizon manner. The proposed Receding‐Horizon Coverage Approach was validated with simulations and real prerecorded data. Finally, the framework was used online during an experimental campaign where several FLS seabed inspections were performed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lee发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
wxy发布了新的文献求助10
1秒前
阳先森发布了新的文献求助10
1秒前
77发布了新的文献求助10
2秒前
xuxin完成签到 ,获得积分10
2秒前
3秒前
3秒前
小佳发布了新的文献求助10
5秒前
ivyjianjie完成签到,获得积分10
5秒前
西瓜皮完成签到 ,获得积分10
5秒前
Lee完成签到,获得积分10
6秒前
6秒前
8秒前
9秒前
10秒前
wangzx完成签到,获得积分10
10秒前
酷酷的听筠完成签到,获得积分10
10秒前
10秒前
12day完成签到,获得积分10
10秒前
10秒前
weixiao发布了新的文献求助10
11秒前
11秒前
12秒前
爱吃冰糖葫芦关注了科研通微信公众号
12秒前
12秒前
勤恳雅莉应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
13秒前
思源应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
GR应助科研通管家采纳,获得30
13秒前
13秒前
yyup应助科研通管家采纳,获得20
13秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583326
求助须知:如何正确求助?哪些是违规求助? 4667155
关于积分的说明 14765758
捐赠科研通 4609337
什么是DOI,文献DOI怎么找? 2529123
邀请新用户注册赠送积分活动 1498393
关于科研通互助平台的介绍 1467043