清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Compression of EMG Signals Using Deep Convolutional Autoencoders

计算机科学 数据压缩 压缩比 卷积神经网络 人工智能 模式识别(心理学) 解码方法 阈值 语音识别 工程类 算法 内燃机 汽车工程 图像(数学)
作者
Kimia Dinashi,Ali Ameri,Mohammad Ali Akhaee,Kevin Englehart,Erik Scheme
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (7): 2888-2897 被引量:18
标识
DOI:10.1109/jbhi.2022.3142034
摘要

Efficient storage and transmission of electromyogram (EMG) data are important for emerging applications such as telemedicine and big data, as a vital tool for further advancement of the field. However, due to limitations in internet speed and hardware resources, transmission and storage of EMG data are challenging. As a solution, this work proposes a new method for EMG data compression using deep convolutional autoencoders (CAE). Eight-channel EMG data from 10 subjects, and high-density EMG data from 18 subjects, were investigated for compression. The CAE architecture was designed to extract an abstract data representation that is heavily compressed, but from which the salient information for classification can be effectively reconstructed. The proposed method attained efficient compression; for CR = 1600, the average PRDN (percentage RMS difference normalized) was 31.5% and the wrist motions classification accuracy (CA) reduced roughly 5%. The CAE substantially outperformed the state-of-the-art high-efficiency video coding and a well-known wavelet-thresholding compression technique. Moreover, by reducing the bit-resolution of the CAE's compressed data from 24 bits to 6 bits, an additional 4-fold compression was achieved without significant degradation of the reconstruction performance. Furthermore, the CAE's inter-subject performance was promising; e.g., for CR = 1600, the PRDN for the inter-subject case was only 2.6% less than that of the within-subject performance. The powerful EMG compression performance with remarkable reconstruction results reflects the CAEs potential as an automatic end-to-end approach with the ability to learn the complete encoding and decoding process. Furthermore, the excellent inter-subject performance demonstrates the generalizability and usability of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
1分钟前
科研通AI5应助Nn采纳,获得10
1分钟前
1分钟前
Nn发布了新的文献求助10
1分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
1分钟前
2分钟前
Sunny完成签到,获得积分10
2分钟前
xiaxiao完成签到,获得积分0
3分钟前
Nn完成签到,获得积分20
3分钟前
快乐随心完成签到 ,获得积分10
3分钟前
Nn发布了新的文献求助10
3分钟前
widesky777完成签到 ,获得积分0
3分钟前
欢呼的冰蝶完成签到,获得积分10
4分钟前
Wang完成签到 ,获得积分20
4分钟前
Owen应助Xin采纳,获得10
5分钟前
文献搬运工完成签到 ,获得积分10
6分钟前
宇文非笑完成签到 ,获得积分10
6分钟前
完美世界应助985博士采纳,获得10
6分钟前
丘比特应助LULU采纳,获得20
6分钟前
7分钟前
7分钟前
whardon发布了新的文献求助10
7分钟前
merrylake完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
捉迷藏完成签到,获得积分10
8分钟前
8分钟前
qipengchen发布了新的文献求助10
8分钟前
Becky完成签到 ,获得积分10
9分钟前
斯文败类应助科研通管家采纳,获得10
9分钟前
cadcae完成签到,获得积分10
10分钟前
10分钟前
哈哈哈发布了新的文献求助10
10分钟前
10分钟前
DocZhao应助哈哈哈采纳,获得10
10分钟前
科研通AI2S应助哈哈哈采纳,获得10
10分钟前
哈哈哈完成签到,获得积分10
10分钟前
Xin完成签到,获得积分10
10分钟前
11分钟前
12分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Happiness in the Nordic World 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3857311
求助须知:如何正确求助?哪些是违规求助? 3399737
关于积分的说明 10613474
捐赠科研通 3122022
什么是DOI,文献DOI怎么找? 1721183
邀请新用户注册赠送积分活动 828920
科研通“疑难数据库(出版商)”最低求助积分说明 777928