Point and interval forecasting of ultra-short-term wind power based on a data-driven method and hybrid deep learning model

风电预测 风力发电 区间(图论) 水准点(测量) 核密度估计 均方误差 电力系统 计算机科学 高斯分布 子序列 数学优化
作者
Dongxiao Niu,Lijie Sun,Min Yu,Keke Wang
出处
期刊:Energy [Elsevier BV]
卷期号:: 124384-124384
标识
DOI:10.1016/j.energy.2022.124384
摘要

Accurate and reliable wind power forecasting (WPF) is significant for ensuring power systems’ economic operation and safe dispatching and for reducing the technical and economic risks faced by power market participants. Based on data-driven and deep-learning methods, we propose a hybrid ultra-short-term WPF framework that can achieve accurate point and interval WPF. First, the multi-sourced and multi-dimensional data sets of wind power plant are preprocessed. Second, feature selection (FS) is conducted to eliminate redundant features. Third, the wind power sequence is decomposed through the variational modal decomposition improved by grey wolf optimization (GWO-VMD). Then, the BiLSTM-Attention model is established to predict each subsequence of wind power. Finally, the prediction intervals of wind power under different confidence levels are estimated by kernel density estimation with the Gaussian kernel function (KDE-Gaussian). The proposed FS-GWO-VMD-BiLSTM-Attention forecasting framework is compared with benchmark models to verify its practicability and reliability. Compared with the BPNN, the mean absolute error, mean absolute percentage error, and mean square error of the FS-GWO-VMD-BiLSTM-Attention model are reduced by 94.03%, 85.82%, and 99.51%, respectively. Furthermore, according to the coverage width-based criterion, KDE-Gaussian is superior to other interval forecasting methods, which can achieve more reliable forecasting of prediction interval. • A data-driven method based on multiple features is adopted for wind power forecasting. • Feature selection and wind power decomposition can reduce the impact of noise data. • A BiLSTM model optimized by attention mechanism improves point forecasting accuracy. • Kernel density estimation with Gaussian function is utilized for interval forecasting. • The superiority of the proposed forecasting methods is verified by different metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江喜欢发布了新的文献求助10
1秒前
3秒前
彼得大帝完成签到,获得积分10
4秒前
joysa完成签到,获得积分10
4秒前
ayj完成签到,获得积分20
5秒前
科研通AI5应助3233129092采纳,获得30
5秒前
6秒前
8秒前
9秒前
10秒前
10秒前
afnfg完成签到 ,获得积分10
10秒前
沐风听雨完成签到 ,获得积分10
11秒前
三文鱼发布了新的文献求助10
11秒前
大个应助邵洋采纳,获得10
12秒前
12秒前
legend完成签到,获得积分10
12秒前
万能图书馆应助cmt采纳,获得10
12秒前
Jasper应助漂泊采纳,获得10
12秒前
嘲风发布了新的文献求助30
13秒前
15秒前
15秒前
guoguo1119完成签到,获得积分10
16秒前
16秒前
西柚发布了新的文献求助10
17秒前
17秒前
hermit发布了新的文献求助10
18秒前
三文鱼完成签到,获得积分20
19秒前
标致的问安完成签到,获得积分20
19秒前
guoguo1119发布了新的文献求助10
19秒前
20秒前
Lionnn发布了新的文献求助10
21秒前
蜡笔小新完成签到,获得积分10
22秒前
知安关注了科研通微信公众号
23秒前
友好紊发布了新的文献求助10
24秒前
11哥应助mo采纳,获得10
24秒前
斯文败类应助fash采纳,获得10
26秒前
wk_sea发布了新的文献求助10
26秒前
26秒前
laola完成签到,获得积分10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783631
求助须知:如何正确求助?哪些是违规求助? 3328775
关于积分的说明 10238640
捐赠科研通 3044136
什么是DOI,文献DOI怎么找? 1670841
邀请新用户注册赠送积分活动 799923
科研通“疑难数据库(出版商)”最低求助积分说明 759171