Marginal Representation Learning With Graph Structure Self-Adaptation

特征学习 人工智能 判别式 计算机科学 机器学习 概率逻辑 图形 模式识别(心理学) 理论计算机科学
作者
Zheng Zhang,Ling Shao,Yong Xu,Li Liu,Jian Yang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:29 (10): 4645-4659 被引量:85
标识
DOI:10.1109/tnnls.2017.2772264
摘要

Learning discriminative feature representations has shown remarkable importance due to its promising performance for machine learning problems. This paper presents a discriminative data representation learning framework by employing a simple yet powerful marginal regression function with probabilistic graphical structure adaptation. A marginally structured representation learning (MSRL) method is proposed by seamlessly incorporating distinguishable regression targets analysis, graph structure adaptation, and robust linear structural learning into a joint framework. Specifically, MSRL learns marginal regression targets from data rather than exploiting the conventional zero-one matrix that greatly hinders the freedom of regression fitness and degrades the performance of regression results. Meanwhile, an optimized graph regularization term with self-improving adaptation is constructed based on probabilistic connection knowledge to improve the compactness of the learned representation. Additionally, the regression targets are further predicted by utilizing the explanatory factors from the latent subspace of data, which can uncover the underlying feature correlations to enhance the reliability. The resulting optimization problem can be elegantly solved by an efficient iterative algorithm. Finally, the proposed method is evaluated by eight diverse but related tasks, including object, face, texture, and scene, categorization data sets. The encouraging experimental results and the explicit theoretical analysis demonstrate the efficacy of the proposed representation learning method in comparison with state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助喜悦的铭采纳,获得10
刚刚
Ava应助tangyong采纳,获得10
2秒前
wenyan111111完成签到,获得积分10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
小马哥发布了新的文献求助10
5秒前
5秒前
爆米花应助现代rong采纳,获得10
6秒前
彼得应助吃彭彭的丁满采纳,获得10
8秒前
烟酒僧发布了新的文献求助10
8秒前
穆空发布了新的文献求助10
9秒前
10秒前
希望天下0贩的0应助Affenyi采纳,获得10
11秒前
潘骏立发布了新的文献求助10
11秒前
11秒前
财年完成签到,获得积分10
12秒前
CipherSage应助Yang_728采纳,获得30
13秒前
糕手完成签到,获得积分20
13秒前
13秒前
发发发发布了新的文献求助10
13秒前
Huzhu应助英勇的涵柳采纳,获得10
15秒前
16秒前
16秒前
科研通AI6应助烟酒僧采纳,获得10
16秒前
16秒前
桓某人发布了新的文献求助10
17秒前
张张发布了新的文献求助10
18秒前
SciGPT应助bhhyyy采纳,获得10
18秒前
萌酱发布了新的文献求助10
18秒前
可爱的函函应助忘忧草采纳,获得10
19秒前
19秒前
20秒前
喜悦的铭发布了新的文献求助10
20秒前
junze完成签到,获得积分10
20秒前
21秒前
不加糖发布了新的文献求助10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481783
求助须知:如何正确求助?哪些是违规求助? 4582732
关于积分的说明 14386753
捐赠科研通 4511532
什么是DOI,文献DOI怎么找? 2472396
邀请新用户注册赠送积分活动 1458660
关于科研通互助平台的介绍 1432181