Image information and visual quality

人类视觉系统模型 计算机科学 图像质量 人工智能 忠诚 计算机视觉 失真(音乐) 质量(理念) 一致性(知识库) 图像处理 特征(语言学) 场景统计 突出 图像(数学) 可视化 过程(计算) 模式识别(心理学) 感知 操作系统 哲学 认识论 神经科学 放大器 生物 带宽(计算) 电信 语言学 计算机网络
作者
H.R. Sheikh,Alan C. Bovik
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:15 (2): 430-444 被引量:3738
标识
DOI:10.1109/tip.2005.859378
摘要

Measurement of visual quality is of fundamental importance to numerous image and video processing applications. The goal of quality assessment (QA) research is to design algorithms that can automatically assess the quality of images or videos in a perceptually consistent manner. Image QA algorithms generally interpret image quality as fidelity or similarity with a "reference" or "perfect" image in some perceptual space. Such "full-reference" QA methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychovisual features of the human visual system (HVS), or by signal fidelity measures. In this paper, we approach the image QA problem as an information fidelity problem. Specifically, we propose to quantify the loss of image information to the distortion process and explore the relationship between image information and visual quality. QA systems are invariably involved with judging the visual quality of "natural" images and videos that are meant for "human consumption." Researchers have developed sophisticated models to capture the statistics of such natural signals. Using these models, we previously presented an information fidelity criterion for image QA that related image quality with the amount of information shared between a reference and a distorted image. In this paper, we propose an image information measure that quantifies the information that is present in the reference image and how much of this reference information can be extracted from the distorted image. Combining these two quantities, we propose a visual information fidelity measure for image QA. We validate the performance of our algorithm with an extensive subjective study involving 779 images and show that our method outperforms recent state-of-the-art image QA algorithms by a sizeable margin in our simulations. The code and the data from the subjective study are available at the LIVE website.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楚歌发布了新的文献求助10
1秒前
完美世界应助灵灵采纳,获得10
3秒前
4秒前
5秒前
lightman发布了新的文献求助10
6秒前
6秒前
脆脆Shark发布了新的文献求助10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
buno应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得30
8秒前
无花果应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
HHHhjl应助科研通管家采纳,获得30
8秒前
科目三应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
9秒前
wulang发布了新的文献求助10
10秒前
11秒前
zxw发布了新的文献求助10
12秒前
典雅的煜城完成签到,获得积分10
12秒前
14秒前
脆脆Shark完成签到,获得积分10
15秒前
15秒前
15秒前
white完成签到 ,获得积分10
15秒前
酸萝卜发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
lcxszsd完成签到 ,获得积分10
17秒前
飞逝的快乐时光完成签到 ,获得积分10
17秒前
何浏亮完成签到,获得积分10
18秒前
20秒前
武雨寒发布了新的文献求助10
20秒前
无奈灵枫发布了新的文献求助10
20秒前
典雅碧空应助小星星采纳,获得10
21秒前
上官若男应助努力的宁采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4638090
求助须知:如何正确求助?哪些是违规求助? 4031727
关于积分的说明 12473842
捐赠科研通 3718728
什么是DOI,文献DOI怎么找? 2052230
邀请新用户注册赠送积分活动 1083556
科研通“疑难数据库(出版商)”最低求助积分说明 965445