蛋白质组学
钙
植物
化学
硝酸钙
生物化学
硝酸盐
生物
细胞生物学
生态学
基因
有机化学
作者
Lingling Nie,Juanjuan Feng,Pengxiang Fan,Xianyang Chen,Jie Guo,Sulian Lv,Hexigeduleng Bao,Weitao Jia,Fang Tai,Ping Jiang,Jinhui Wang,Yinxin Li
摘要
Improving crop nitrogen (N) use efficiency under salinity is essential for the development of sustainable agriculture in marginal lands. Salicornia europaea is a succulent euhalophyte that can survive under high salinity and N-deficient habitat conditions, implying that a special N assimilation mechanism may exist in this plant. In this study, phenotypic and physiological changes of S. europaea were investigated under different nitrate and NaCl levels. The results showed that NaCl had a synergetic effect with nitrate on the growth of S. europaea. In addition, the shoot nitrate concentration and nitrate uptake rate of S. europaea were increased by NaCl treatment under both low N and high N conditions, suggesting that nitrate uptake in S. europaea was NaCl facilitated. Comparative proteomic analysis of root plasma membrane (PM) proteins revealed 81 proteins, whose abundance changed significantly in response to NaCl and nitrate. These proteins are involved in metabolism, cell signalling, transport, protein folding, membrane trafficking, and cell structure. Among them, eight proteins were calcium signalling components, and the accumulation of seven of the above-mentioned proteins was significantly elevated by NaCl treatment. Furthermore, cytosolic Ca(2+) concentration ([Ca(2+)]cyt) was significantly elevated in S. europaea under NaCl treatment. The application of the Ca(2+) channel blocker LaCl3 not only caused a decrease in nitrate uptake rate, but also attenuated the promoting effects of NaCl on nitrate uptake rates. Based on these results, a possible regulatory network of NaCl-facilitated nitrate uptake in S. europaea focusing on the involvement of Ca(2+) signalling was proposed.
科研通智能强力驱动
Strongly Powered by AbleSci AI