最大化
病毒式营销
计算机科学
节点(物理)
常量(计算机编程)
近似算法
级联
数学优化
图形
线性规划
理论计算机科学
算法
数学
万维网
化学
工程类
程序设计语言
社会化媒体
结构工程
色谱法
作者
Youze Tang,Xiaokui Xiao,Yanchen Shi
标识
DOI:10.1145/2588555.2593670
摘要
Given a social network G and a constant $k$, the influence maximization problem asks for k nodes in G that (directly and indirectly) influence the largest number of nodes under a pre-defined diffusion model. This problem finds important applications in viral marketing, and has been extensively studied in the literature. Existing algorithms for influence maximization, however, either trade approximation guarantees for practical efficiency, or vice versa. In particular, among the algorithms that achieve constant factor approximations under the prominent independent cascade (IC) model or linear threshold (LT) model, none can handle a million-node graph without incurring prohibitive overheads.
科研通智能强力驱动
Strongly Powered by AbleSci AI