Attribute Sampling: A Belief-Function Approach to Statistical Audit Evidence

样品(材料) 样本量测定 统计 区间(图论) 数学 采样(信号处理) 功能(生物学) 计量经济学 人口 置信区间 计算机科学 人口学 组合数学 社会学 滤波器(信号处理) 生物 化学 进化生物学 色谱法 计算机视觉
作者
Peter R. Gillett,Rajendra P. Srivastava
出处
期刊:Auditing-a Journal of Practice & Theory [American Accounting Association]
卷期号:19 (1): 145-155 被引量:14
标识
DOI:10.2308/aud.2000.19.1.145
摘要

The Dempster-Shafer belief function framework has been used to model the aggregation of audit evidence based on subjectively assessed beliefs. This paper shows how statistical evidence obtained by means of attribute sampling may be represented as belief functions, so that it can be incorporated into such models. In particular, the article shows: (1) how to determine the sample size in attribute sampling to obtain a desired level of belief that the true attribute occurrence rate of the population lies in a given interval; (2) what level of belief is obtained for a specified interval, given the sample result. As intuitively expected, we find that the sample size increases as the desired level of belief in the interval increases. In evaluating the sample results, our findings are again intuitively appealing. For example, provided the sample occurrence rate falls in the interval B for a given number of occurrences of the attribute, we find that the belief in B, Bel(B), increases as the sample size increases. However, if the sample occurrence rate falls outside of the interval, then Bel(B) is zero. Note that, in general, both Bel(B) and Bel(notB) are zero when the sample occurrence rate falls at the end points of the interval. These results extend similar results already available for variables sampling. However, the auditor faces an additional problem for attribute sampling: how to convert belief in an interval for control exceptions into belief in an interval for material misstatements in the financial statements, so that it can be combined with evidence from other sources in implementations of the Audit Risk Model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左秋白完成签到,获得积分10
刚刚
鲑鱼完成签到 ,获得积分10
1秒前
时尚叫兽完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
miao发布了新的文献求助10
3秒前
11完成签到,获得积分20
4秒前
bin完成签到,获得积分20
4秒前
田様应助chengzi采纳,获得10
4秒前
5秒前
Arthur发布了新的文献求助10
6秒前
迷路的沛芹完成签到 ,获得积分10
6秒前
7秒前
11发布了新的文献求助10
7秒前
大腚疯猪应助宋佳顺采纳,获得20
7秒前
socialbot完成签到,获得积分10
7秒前
啊w完成签到 ,获得积分20
8秒前
Jiayi完成签到,获得积分10
8秒前
小波发布了新的文献求助30
8秒前
9秒前
9秒前
义气小白菜完成签到 ,获得积分10
10秒前
Hugo完成签到,获得积分10
10秒前
10秒前
俞若枫完成签到,获得积分10
11秒前
mlyy发布了新的文献求助10
12秒前
Arthur完成签到,获得积分10
12秒前
Meyako完成签到 ,获得积分10
12秒前
科研通AI5应助bin采纳,获得10
12秒前
爆米花应助11采纳,获得20
12秒前
lxlcx发布了新的文献求助10
14秒前
高源伯完成签到,获得积分10
14秒前
江筱筱完成签到,获得积分10
14秒前
拾野之苹完成签到,获得积分10
15秒前
小朱完成签到 ,获得积分10
15秒前
15秒前
是小越啊完成签到,获得积分10
16秒前
拾野之苹发布了新的文献求助10
17秒前
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
SQL vs NoSQL: Six Systems Compared 401
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796582
求助须知:如何正确求助?哪些是违规求助? 3341785
关于积分的说明 10307798
捐赠科研通 3058389
什么是DOI,文献DOI怎么找? 1678185
邀请新用户注册赠送积分活动 805918
科研通“疑难数据库(出版商)”最低求助积分说明 762841