固氮
土壤水分
土壤肥力
固定(群体遗传学)
固氮酶
营养物
磷
生态系统
重氮
氮气
生物
环境化学
化学
生态学
生物化学
基因
有机化学
作者
Nina Wurzburger,Jean Philippe Bellenger,Anne M. L. Kraepiel,Lars O. Hedin
出处
期刊:PLOS ONE
[Public Library of Science]
日期:2012-03-21
卷期号:7 (3): e33710-e33710
被引量:141
标识
DOI:10.1371/journal.pone.0033710
摘要
Biological di-nitrogen fixation (N(2)) is the dominant natural source of new nitrogen to land ecosystems. Phosphorus (P) is thought to limit N(2) fixation in many tropical soils, yet both molybdenum (Mo) and P are crucial for the nitrogenase reaction (which catalyzes N(2) conversion to ammonia) and cell growth. We have limited understanding of how and when fixation is constrained by these nutrients in nature. Here we show in tropical forests of lowland Panama that the limiting element on asymbiotic N(2) fixation shifts along a broad landscape gradient in soil P, where Mo limits fixation in P-rich soils while Mo and P co-limit in P-poor soils. In no circumstance did P alone limit fixation. We provide and experimentally test a mechanism that explains how Mo and P can interact to constrain asymbiotic N(2) fixation. Fixation is uniformly favored in surface organic soil horizons--a niche characterized by exceedingly low levels of available Mo relative to P. We show that soil organic matter acts to reduce molybdate over phosphate bioavailability, which, in turn, promotes Mo limitation in sites where P is sufficient. Our findings show that asymbiotic N(2) fixation is constrained by the relative availability and dynamics of Mo and P in soils. This conceptual framework can explain shifts in limitation status across broad landscape gradients in soil fertility and implies that fixation depends on Mo and P in ways that are more complex than previously thought.
科研通智能强力驱动
Strongly Powered by AbleSci AI