An isocratic reverse-phase high-performance liquid chromatography method for the separation and quantitation of total pyridine dinucleotides in hepatocyte cultures is described. Cells are extracted with cold 3m perchloric acid or 0.5n sodium hydroxide containing 50% (v/v) ethanol and 35% cesium chloride for the determination of the oxidized or reduced pyridine dinucleotides, respectively. Pyridine dinucleotides in the neutralized extracts were separated on an Excellopak ODS C18 (4.6 × 150 mm) column with 0.1m potassium phosphate, pH 6.0, containing 3.75% methanol as the mobile phase. NAD+ and NADP+ were detected spectrophotometrically at 254 nm. The response was linear from 5 to 4000 pmol with recoveries of NAD+ and NADP+ of 98 and 101.1%, respectively. NADH and NADPH were monitored fluorometrically by activation at 370 nm and emission in the 400–700 nm range. The reduced pyridine dinucleotides had a linear response from 7.5 to 60 pmol with recoveries of NADH and NADPH of 99.4 and 101.3%, respectively. The coefficients of variation for all of the pyridine dinucleotide standards were less than 3.5%.