材料科学
离子
化学物理
分子动力学
电导
溶剂化
调制(音乐)
离子键合
离子电导率
相变
神经形态工程学
结晶
电化学
相(物质)
纳米技术
氧化物
离子运输机
电阻抗
热扩散率
电导率
衍射
离子通道
静电学
动力学(音乐)
记忆电阻器
光电子学
作者
Hae Yeon Lee,Sobin Alosious,Min-Ho Jin,Yeonseo Kim,Yeonseo Kim,Tengfei Luo,Youn Sang Kim,Youn Sang Kim
标识
DOI:10.1002/adfm.202517100
摘要
Abstract Electrolyte‐gated transistors (EGTs) are promising candidates for low‐power and energy‐efficient artificial synapses utilizing rapid ion‐mediated electrostatic and electrochemical reactions. However, the correlation between sub‐nanosecond ion transport and linear conductance modulation remains elusive when analyzed solely by macroscopic electrical characterization. Here, molecular dynamics (MD) simulations are integrated with experiments using Li‐EGTs at different ion concentrations. MD simulations quantify Li⁺ displacement, coordination environments, and ionic conductivity in poly(ethylene oxide) electrolytes, revealing suppressed Li⁺ diffusivity and reorganization of the ethylene oxide (EO) solvation structure at an [EO]:[Li⁺] ratio of 8:1. EGTs are fabricated with different EO ratios to investigate the transition regime. Electrochemical impedance spectroscopy, optical microscopy, and X‐ray diffraction confirm the MD‑predicted ion dynamic transition at 8:1 EO ratio and identify phase crystallization at the ultrahigh 2:1 ratio. Consequently, Li‐EGTs fabricated with the optimized 2:1 EO ratio successfully achieve an accuracy of 89.51% in neural network training. This study bridges atomic‑scale insights and device performance, offering a systematic, precision‑engineered framework for complex spatiotemporal ion dynamics in artificial synaptic EGTs.
科研通智能强力驱动
Strongly Powered by AbleSci AI