间充质干细胞
医学
FOXP3型
点头老鼠
免疫学
点头
外周血单个核细胞
癌症研究
自身免疫性疾病
免疫系统
病理
体外
抗体
生物
内分泌学
糖尿病
生物化学
作者
Yanying Liu,Chunlei Li,Shiyao Wang,Jing Guo,Jianping Guo,Jiangnan Fu,Limin Ren,Yuan An,Jing He,Zhanguo Li
标识
DOI:10.1080/14397595.2019.1707996
摘要
Primary Sjögren's syndrome (SS) is a lymphoproliferative disease with a chronic autoimmune disorder characterized by mononuclear cell (MNC) infiltration of notably the lacrimal and salivary glands. As mesenchymal stem cells (MSCs) regulate series of immunological responses partially by regulating proportion of CD4+ T cells and inducing an immunosuppressive local milieu, umbilical cord MSCs (UC-MSCs) are being considered as a novel source for cell-based therapies against primary SS. This study aimed to investigate the feasibility of UC-MSCs in treatment of SS and to explore the possible mechanism(s) with the special emphasis on regulatory T cells (Tregs). Potent immunosuppressive effects of human UC-MSCs on SS were explored in vivo and in vitro. To study the effects of human UC-MSCs on the development and progression of SS, human UC-MSCs were administered before disease onset (preventive protocol) and after disease occurrence (therapeutic protocol) in non-obese diabetic (NOD) mice. In human study, the effect of human UC-MSCs on T cells from SS patients was studied. In both protocols, the histopathology of submandibular and sublingual salivary glands showed decreased inflammatory infiltrates. In vitro, human UC-MSCs exhibited potent suppressive effects on responses of MNCs in NOD mice and T cells in SS patients. Such inhibitory effects were coupled with decreased production of proinflammtory cytokines interferon-γ, interleukin (IL)-6, tumor necrosis factor-α and increased production of IL-10 (n = 10, p < .01). The frequency of CD4+Foxp3+T cells in the spleen of NOD recipients was elevated (n = 6, p < .05). Human UC-MSCs are capable of inducing CD4+Foxp3+ T cells in both NOD mice and human in vitro. Human UC-MSCs effectively interfere with the autoimmune attack in the course of SS by inducing an in vivo state of T cell unresponsiveness and the upregulation of Tregs.
科研通智能强力驱动
Strongly Powered by AbleSci AI