Progressive Feature Matching: Incremental Graph Construction and Optimization

马尔可夫随机场 特征(语言学) 人工智能 模式识别(心理学) 匹配(统计) 特征匹配 计算机科学 特征提取 数学 方向(向量空间) 图像(数学) 图像分割 几何学 语言学 统计 哲学
作者
Sehyung Lee,Jongwoo Lim,Il Hong Suh
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:29: 6992-7005 被引量:35
标识
DOI:10.1109/tip.2020.2996092
摘要

We present a novel feature matching algorithm that systematically utilizes the geometric properties of image features such as position, scale, and orientation, in addition to the conventional descriptor vectors. In challenging scenes, in which repetitive structures and large view changes are present, it is difficult to find correct correspondences using conventional approaches that only use descriptors, as the descriptor distances of correct matches may not be the least among the candidates. The feature matching problem is formulated as a Markov random field (MRF) that uses descriptor distances and relative geometric similarities together. Assuming that the layout of the nearby features does not considerably change, we propose the bidirectional transfer measure to gauge the geometric consistency between the pairs of feature correspondences. The unmatched features are explicitly modeled in the MRF to minimize their negative impact. Instead of solving the MRF on the entire features at once, we start with a small set of confident feature matches, and then progressively expand the MRF with the remaining candidate matches. The proposed progressive approach yields better feature matching performance and faster processing time. Experimental results show that the proposed algorithm provides better feature correspondences in many challenging scenes, i.e., more matches with higher inlier ratio and lower computational cost than those of the state-of-the-art algorithms. The source code of our implementation is open to the public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助U123456采纳,获得30
2秒前
zhaopenghui发布了新的文献求助10
2秒前
3秒前
玩命的黑裤应助舒适访彤采纳,获得10
3秒前
清爽饼干完成签到,获得积分10
4秒前
4秒前
4秒前
善学以致用应助smile采纳,获得10
6秒前
HAO完成签到,获得积分10
6秒前
大模型应助蓝天采纳,获得10
6秒前
晴朗的蓝完成签到,获得积分10
6秒前
7秒前
7秒前
sdshi发布了新的文献求助10
8秒前
Smallriver发布了新的文献求助10
9秒前
9秒前
爆米花应助Lxy_zb采纳,获得10
9秒前
榴莲姑娘发布了新的文献求助30
10秒前
11秒前
可舒发布了新的文献求助10
11秒前
希望天下0贩的0应助Jun采纳,获得10
12秒前
14秒前
GUO发布了新的文献求助10
14秒前
serenity完成签到 ,获得积分10
14秒前
hahaya完成签到,获得积分20
14秒前
三三完成签到,获得积分10
15秒前
U123456发布了新的文献求助30
17秒前
科研通AI6应助师震铎采纳,获得10
17秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
核桃应助满天星采纳,获得30
19秒前
灵巧半莲完成签到,获得积分10
20秒前
谦让R发布了新的文献求助10
21秒前
21秒前
ljc完成签到 ,获得积分10
21秒前
Melody完成签到,获得积分10
23秒前
yy完成签到,获得积分10
23秒前
23秒前
调皮以寒发布了新的文献求助10
23秒前
www完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553450
求助须知:如何正确求助?哪些是违规求助? 4637983
关于积分的说明 14651924
捐赠科研通 4579900
什么是DOI,文献DOI怎么找? 2511951
邀请新用户注册赠送积分活动 1486817
关于科研通互助平台的介绍 1457747