Enhanced Passivation and Carrier Collection in Ink-Processed PbS Quantum Dot Solar Cells via a Supplementary Ligand Strategy

钝化 材料科学 量子点 光伏 光电子学 纳米技术 能量转换效率 半导体 光伏系统 图层(电子) 电气工程 工程类
作者
Xiaokun Yang,Ji Yang,Muhammad Ullah,Yong Xia,Guijie Liang,Song Wang,Jianbing Zhang,Hsien‐Yi Hsu,Haisheng Song,Jiang Tang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:12 (37): 42217-42225 被引量:40
标识
DOI:10.1021/acsami.0c08135
摘要

Solution-processed semiconductors have opened promising avenues for next-generation semiconductor and optoelectronic industries. Colloidal quantum dots (QDs) as one of the most typical materials are widely utilized for the design and development of light-emitting diodes, photodetectors, and solar cells. Recently, an emerging process of PbS QD ink has been employed to attain world record power conversion efficiency by surface passivation using a PbI2 ligand to form PbI2–PbS and the process optimization in the field of photovoltaics. However, the bonding and debonding of the ligands on the surface of PbS QDs are dynamic reversible processes in an ink environment. The uncoordinated Pb2+ defects induced by unbonded PbS QDs serve as the recombination sites. Thus, the present ink process leaves much room for the enhancement by surface passivation of PbS QDs. Herein, we devise an efficient strategy with a supplementary phenethylammonium iodide (PEAI) ligand for the formation of the PEAI–PbS interface in PbS QD ink-processed solar cells. This newly developed method can not only improve the passivation on the QD surface by iodine ions but also simultaneously enhance the carrier collection efficiency by a graded energy alignment between PbI2–PbS and PEAI–PbS layers. The corresponding power conversion efficiency of the optimized device has significantly increased by approximately 20% more than the control device. As a result, such a robust and efficient method regarded as a strategic candidate can overcome the bottleneck of imperfect passivation caused by a large specific surface area and loose bonding ligands, eventually promoting the industrial application of QDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
sqk关闭了sqk文献求助
1秒前
酷波er应助wangjunhao采纳,获得10
1秒前
852应助李毅勤采纳,获得10
2秒前
袁寒烟发布了新的文献求助10
2秒前
123发布了新的文献求助10
2秒前
3秒前
bacibobo完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
丘比特应助李龙波采纳,获得10
3秒前
Xzmmmm发布了新的文献求助10
4秒前
许安华发布了新的文献求助10
4秒前
4秒前
4秒前
Mikivi完成签到,获得积分10
4秒前
酷波er应助tangjun采纳,获得10
5秒前
二宝发布了新的文献求助10
6秒前
7秒前
Jasper应助skkr采纳,获得10
7秒前
袁寒烟完成签到,获得积分10
8秒前
寒素发布了新的文献求助10
8秒前
陈建宇给陈建宇的求助进行了留言
9秒前
9秒前
小二郎应助Xenia采纳,获得10
9秒前
满意的寒凝完成签到 ,获得积分10
9秒前
彭于晏应助kakafan采纳,获得10
10秒前
情怀应助爱吃冬瓜采纳,获得10
10秒前
sky关注了科研通微信公众号
10秒前
11秒前
韦远侵完成签到,获得积分10
11秒前
丘比特应助yulx001采纳,获得10
11秒前
11秒前
123应助happyAlice采纳,获得20
11秒前
12秒前
shouyu29应助繁荣的从灵采纳,获得10
12秒前
12秒前
邢女士发布了新的文献求助10
13秒前
BSDL完成签到,获得积分20
13秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
可瓷化聚合物复合材料的制备及成瓷性能、机理研究 500
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3869826
求助须知:如何正确求助?哪些是违规求助? 3412150
关于积分的说明 10677830
捐赠科研通 3136487
什么是DOI,文献DOI怎么找? 1730281
邀请新用户注册赠送积分活动 833847
科研通“疑难数据库(出版商)”最低求助积分说明 780956