Adaptive computation offloading and resource allocation strategy in a mobile edge computing environment

计算机科学 移动边缘计算 分布式计算 云计算 边缘计算 调度(生产过程) 计算卸载 任务(项目管理) 移动设备 移动云计算 实时计算 数学优化 操作系统 数学 管理 经济
作者
Zhao Tong,Xiaomei Deng,Feng Ye,Sunitha Basodi,Xueli Xiao,Yi Pan
出处
期刊:Information Sciences [Elsevier BV]
卷期号:537: 116-131 被引量:86
标识
DOI:10.1016/j.ins.2020.05.057
摘要

With the popularity of smart mobile equipment, the amount of data requested by users is growing rapidly. The traditional centralized processing method represented by the cloud computing model can no longer satisfy the effective processing of large amounts of data. Therefore, the mobile edge computing (MEC) is used as a new computing model to process the big growing data, which can better meet the service requirements. Similar to the task scheduling problem in cloud computing, an important issue in the MEC environment is task offloading and resource allocation. In this paper, we propose an adaptive task offloading and resource allocation algorithm in the MEC environment. The proposed algorithm uses the deep reinforcement learning (DRL) method to determine whether the task needs to be offloaded and allocates computing resources for the task. We simulate the generation of tasks in the form of Poisson distribution, and all tasks are submitted to be processed in the form of task flow. Besides, we consider the mobility of mobile user equipment (UE) between base stations (BSs), which is closer to the actual application environment. The DRL method is used to select the suitable computing node for each task according to the optimization objective, and the optimal strategy for solving the objective problem is learned in the algorithm training process. Compared with other comparison algorithms in different MEC environments, our proposed algorithm has the best performance in reducing the task average response time and the total system energy consumption, improving the system utility, which meets the profits of users and service providers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张完成签到,获得积分10
刚刚
刚刚
歪歪踢完成签到 ,获得积分10
刚刚
爬不起来完成签到,获得积分10
刚刚
大碗完成签到,获得积分10
1秒前
1秒前
CodeCraft应助VincentZ采纳,获得10
1秒前
61489486完成签到,获得积分10
1秒前
cdercder应助小新采纳,获得10
1秒前
1秒前
1秒前
1秒前
SciGPT应助瓶里岑采纳,获得10
3秒前
3秒前
小尘埃完成签到,获得积分10
3秒前
3秒前
不改颜色的孤星关注了科研通微信公众号
4秒前
lan发布了新的文献求助10
4秒前
61489486发布了新的文献求助10
5秒前
黄启迪完成签到,获得积分10
5秒前
三厂白水发布了新的文献求助10
6秒前
ZMY发布了新的文献求助10
6秒前
WDF完成签到,获得积分10
6秒前
小蘑菇应助郭小胖14采纳,获得10
6秒前
思源应助白桃味的夏采纳,获得10
6秒前
MingY发布了新的文献求助10
6秒前
空山新雨发布了新的文献求助10
7秒前
zho发布了新的文献求助10
7秒前
yoke完成签到,获得积分10
7秒前
今后应助礽粥粥采纳,获得10
7秒前
大个应助南北采纳,获得20
8秒前
大模型应助LiverStronger采纳,获得10
8秒前
8秒前
小w完成签到,获得积分10
8秒前
追寻紫安发布了新的文献求助10
8秒前
ssss完成签到 ,获得积分10
9秒前
传奇3应助lllll采纳,获得10
9秒前
10秒前
caohai完成签到,获得积分20
10秒前
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798