Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics using physics-informed neural networks

人工神经网络 升程阶跃函数 计算机科学 人工智能 过程(计算) 水准点(测量) 机器学习 工业工程 工程类 数学 大地测量学 统计 操作系统 地理
作者
Qiming Zhu,Zeliang Liu,Jinhui Yan
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2008.13547
摘要

The recent explosion of machine learning (ML) and artificial intelligence (AI) shows great potential in the breakthrough of metal additive manufacturing (AM) process modeling. However, the success of conventional machine learning tools in data science is primarily attributed to the unprecedented large amount of labeled data-sets (big data), which can be either obtained by experiments or first-principle simulations. Unfortunately, these labeled data-sets are expensive to obtain in AM due to the high expense of the AM experiments and prohibitive computational cost of high-fidelity simulations. We propose a physics-informed neural network (PINN) framework that fuses both data and first physical principles, including conservation laws of momentum, mass, and energy, into the neural network to inform the learning processes. To the best knowledge of the authors, this is the first application of PINN to three dimensional AM processes modeling. Besides, we propose a hard-type approach for Dirichlet boundary conditions (BCs) based on a Heaviside function, which can not only enforce the BCs but also accelerate the learning process. The PINN framework is applied to two representative metal manufacturing problems, including the 2018 NIST AM-Benchmark test series. We carefully assess the performance of the PINN model by comparing the predictions with available experimental data and high-fidelity simulation results. The investigations show that the PINN, owed to the additional physical knowledge, can accurately predict the temperature and melt pool dynamics during metal AM processes with only a moderate amount of labeled data-sets. The foray of PINN to metal AM shows the great potential of physics-informed deep learning for broader applications to advanced manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗鸯鸯发布了新的文献求助10
刚刚
周小鱼完成签到,获得积分10
1秒前
wishe完成签到,获得积分10
2秒前
fzh发布了新的文献求助10
4秒前
shyxia完成签到 ,获得积分10
8秒前
弧光完成签到 ,获得积分10
9秒前
Sanmo完成签到,获得积分10
10秒前
Curry完成签到 ,获得积分10
10秒前
草木完成签到,获得积分20
14秒前
闾丘惜寒完成签到,获得积分10
15秒前
李崋壹完成签到 ,获得积分10
18秒前
长安乱世完成签到 ,获得积分0
22秒前
CLTTT完成签到,获得积分10
22秒前
温馨完成签到 ,获得积分10
27秒前
科研通AI5应助饼干采纳,获得30
27秒前
31秒前
DY完成签到,获得积分10
34秒前
37秒前
JING发布了新的文献求助10
37秒前
kangshuai完成签到,获得积分10
38秒前
天才小能喵完成签到 ,获得积分0
40秒前
一鸣大人发布了新的文献求助10
41秒前
慕青应助JING采纳,获得10
46秒前
哈哈哈完成签到 ,获得积分10
46秒前
一鸣大人完成签到,获得积分10
48秒前
失眠的香蕉完成签到 ,获得积分10
1分钟前
珂珂完成签到 ,获得积分10
1分钟前
小鳄鱼一只完成签到,获得积分10
1分钟前
遍地捡糖不要钱完成签到 ,获得积分10
1分钟前
葱饼完成签到 ,获得积分10
1分钟前
四十四次日落完成签到 ,获得积分10
1分钟前
白昼の月完成签到 ,获得积分0
1分钟前
goodsheep完成签到 ,获得积分10
1分钟前
刘清河完成签到 ,获得积分10
1分钟前
崩溃完成签到,获得积分10
1分钟前
冷静水蓝完成签到 ,获得积分10
1分钟前
热心的飞风完成签到 ,获得积分10
1分钟前
efren1806完成签到,获得积分10
1分钟前
钟声完成签到,获得积分0
1分钟前
nannan完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792550
求助须知:如何正确求助?哪些是违规求助? 3336777
关于积分的说明 10282126
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468