A Semi-Supervised Learning Framework for TRIZ-Based Chinese Patent Classification

特里兹 计算机科学 人工智能 机器学习
作者
Lixiao Huang,Jiasi Yu,Yongjun Hu,Huiyou Chang
标识
DOI:10.1145/3404555.3404600
摘要

Automatic patent classification based on the TRIZ inventive principles is essential for patent management and industrial analysis. However, acquiring labels for deep learning methods is extraordinarily difficult and costly. This paper proposes a new two-stage semi-supervised learning framework called TRIZ-ESSL, which stands for Enhanced Semi-Supervised Learning for TRIZ. TRIZ-ESSL makes full use of both labeled and unlabeled data to improve the prediction performance. TRIZ-ESSL takes the advantages of semi-supervised sequence learning and mixed objective function, a combination of cross-entropy, entropy minimization, adversarial and virtual adversarial loss functions. Firstly, TRIZ-ESSL uses unlabeled data to train a recurrent language model. Secondly, TRIZ-ESSL initializes the weights of the LSTM-based model with the pre-trained recurrent language model and then trains the text classification model using mixed objective function on both labeled and unlabeled sets. On 3 TRIZ-based classification tasks, TRIZ-ESSL outperforms the current popular semi-supervised training methods and Bert in terms of accuracy score.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
所所应助果果采纳,获得10
7秒前
9秒前
NatureLee发布了新的文献求助10
12秒前
12秒前
14秒前
12345678发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
17秒前
行走的猫发布了新的文献求助10
17秒前
18秒前
21秒前
22秒前
黄俊发布了新的文献求助10
23秒前
23秒前
wyao发布了新的文献求助10
23秒前
24秒前
25秒前
眯眯眼的世界应助冯同学采纳,获得10
27秒前
几钱发布了新的文献求助30
28秒前
诚心代芙完成签到 ,获得积分10
29秒前
核桃应助kl采纳,获得10
29秒前
hsp发布了新的文献求助10
30秒前
科研通AI5应助woody采纳,获得10
31秒前
33秒前
34秒前
37秒前
小二郎应助黄俊采纳,获得10
37秒前
37秒前
38秒前
12345678完成签到,获得积分10
38秒前
39秒前
仲夏发布了新的文献求助10
39秒前
完美世界应助waddles采纳,获得10
40秒前
WC发布了新的文献求助10
41秒前
42秒前
43秒前
果果发布了新的文献求助10
44秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845043
求助须知:如何正确求助?哪些是违规求助? 3387239
关于积分的说明 10548500
捐赠科研通 3107967
什么是DOI,文献DOI怎么找? 1712311
邀请新用户注册赠送积分活动 824304
科研通“疑难数据库(出版商)”最低求助积分说明 774706