Tubenet: A Special Trumpetnet for Explicit Solutions to Inverse Problems

反向 数学 广义逆 应用数学 数学分析 数学优化 有限元法
作者
G. R. Liu,Shuyong Duan,Zuyang Zhang,Xu Han
出处
期刊:International Journal of Computational Methods [World Scientific]
卷期号:18 (01): 2050030-2050030 被引量:9
标识
DOI:10.1142/s0219876220500309
摘要

Different types of effective neural network structures have been developed, including the recurrent neural networks (RNNs), concurrent neural networks (CNNs), among others. The TrumpetNet was recently proposed by the leading author for creating two-way deepnets using physics-law-based models, such as finite element method (FEM) and smoothed FEM or S-FEM. The unique feature of the TrumpetNet is the effectiveness of both forward and inverse problems, by design a desired net architecture. Most importantly, solutions to inverse problems can be analytically derived in explicit formulae for the first time. This work presents a novel TubeNet designed for inverse problems, by designing a simple but special tubular architecture. The TubeNet is a simplified TrumpetNet, and hence it is found easier to apply. It uses the principal component analysis (PCA) to reduce the dimensionality of the “measurement” data, which allows one to select the desired number of major principal components to match with the number of neurons in a layer in the TubeNet. Intensive studies and analyses were conducted to examine the proposed TubeNet, using solid mechanics problem considering material property as parameters to be inversely identified. In this work, we successfully inversely identified up to eight parameters for idealized composite laminates, through explicit formulas, termed as direct-weights-inversion (DWI) approach, which is a chain of matrix inversions for the weight matrices of the network layers. The proposed TubeNet concept can fundamentally change the way in which inverse problems in various fields of studies are dealt with. It is a breakthrough in dealing with inverse problem that are inherently difficult to solve.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zx_1993应助舒心数据线采纳,获得20
刚刚
1秒前
orixero应助哈哈哈哈采纳,获得10
2秒前
AMAME12完成签到,获得积分10
2秒前
3秒前
zz完成签到,获得积分20
3秒前
阳和启蛰发布了新的文献求助10
3秒前
大智若愚啊完成签到,获得积分20
3秒前
小邸发布了新的文献求助10
3秒前
drwzm完成签到 ,获得积分10
4秒前
Yeyuntian发布了新的文献求助10
4秒前
5秒前
AMAME12发布了新的文献求助10
5秒前
汤姆凯特完成签到,获得积分10
5秒前
6秒前
科研通AI6应助123采纳,获得20
7秒前
英俊的铭应助李金玉采纳,获得10
7秒前
7秒前
hzh发布了新的文献求助10
9秒前
李爱国应助Giannis采纳,获得10
10秒前
10秒前
10秒前
10秒前
11秒前
阳和启蛰完成签到,获得积分10
11秒前
哈基米德应助汤姆凯特采纳,获得20
11秒前
11秒前
朗月清秋Y发布了新的文献求助10
12秒前
14秒前
Titter发布了新的文献求助10
15秒前
Mint完成签到,获得积分10
15秒前
王涛发布了新的文献求助10
16秒前
zzx发布了新的文献求助30
16秒前
hzh完成签到,获得积分10
16秒前
17秒前
小黑子发布了新的文献求助10
17秒前
17秒前
xxx完成签到,获得积分10
19秒前
青萍子林完成签到,获得积分10
19秒前
望TIAN完成签到,获得积分10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342994
求助须知:如何正确求助?哪些是违规求助? 4478635
关于积分的说明 13940380
捐赠科研通 4375604
什么是DOI,文献DOI怎么找? 2404155
邀请新用户注册赠送积分活动 1396661
关于科研通互助平台的介绍 1369026