Large-Scale Mobile App Identification Using Deep Learning

计算机科学 比例(比率) 鉴定(生物学) 深度学习 人工智能 移动应用程序 机器学习 万维网 地图学 植物 生物 地理
作者
Shahbaz Rezaei,Bryce Kroencke,Xin Liu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 348-362 被引量:94
标识
DOI:10.1109/access.2019.2962018
摘要

Many network services and tools (e.g. network monitors, malware-detection systems, routing and billing policy enforcement modules in ISPs) depend on identifying the type of traffic that passes through the network. With the widespread use of mobile devices, the vast diversity of mobile apps, and the massive adoption of encryption protocols (such as TLS), large-scale encrypted traffic classification becomes increasingly difficult. In this paper, we propose a deep learning model for mobile app identification that works even with encrypted traffic. The proposed model only needs the payload of the first few packets for classification, and, hence, it is suitable even for applications that rely on early prediction, such as routing and QoS provisioning. The deep model achieves between 84% to 98% accuracy for the identification of 80 popular apps. We also perform occlusion analysis to bring insight into what data is leaked from SSL/TLS protocol that allows accurate app identification. Moreover, our traffic analysis shows that many apps generate not only app-specific traffic, but also numerous ambiguous flows. Ambiguous flows are flows generated by common functionality modules, such as advertisement and traffic analytics. Because such flows are common among many different apps, identifying the source app that generates ambiguous flows is challenging. To address this challenge, we propose a CNN+LSTM model that uses adjacent flows to learn the order and pattern of multiple flows, to better identify the app that generates them. We show that such flow association considerably improves the accuracy, particularly for ambiguous flows. Furthermore, we show that our approach is robust to mixed traffic scenarios where some unrelated flows may appear in adjacent flows. To the best of our knowledge, this is the first work that identifies the source app for ambiguous flows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张龙雨发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
cyy发布了新的文献求助10
5秒前
Jasper应助优秀寻云采纳,获得10
5秒前
6秒前
6秒前
粗犷的灵松完成签到 ,获得积分10
7秒前
喜悦的飞飞完成签到,获得积分10
8秒前
8秒前
8秒前
sweetbearm应助华生采纳,获得200
9秒前
赘婿应助粘豆包采纳,获得10
9秒前
所所应助xjcy采纳,获得10
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
无花果应助科研通管家采纳,获得10
11秒前
11秒前
烟花应助科研通管家采纳,获得10
11秒前
海棠发布了新的文献求助10
11秒前
脑洞疼应助科研通管家采纳,获得30
11秒前
华仔应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
12秒前
福娃哇完成签到 ,获得积分10
12秒前
科研通AI5应助MZlm采纳,获得10
12秒前
zhang完成签到 ,获得积分10
14秒前
15秒前
15秒前
渐渐我闻歌都不想起舞完成签到,获得积分10
16秒前
寂静岭完成签到,获得积分10
17秒前
lala发布了新的文献求助10
17秒前
生菜发布了新的文献求助10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794725
求助须知:如何正确求助?哪些是违规求助? 3339522
关于积分的说明 10296464
捐赠科研通 3056283
什么是DOI,文献DOI怎么找? 1676944
邀请新用户注册赠送积分活动 804956
科研通“疑难数据库(出版商)”最低求助积分说明 762244