Learning With Partners to Improve the Multi-Source Cross-Dataset Palmprint Recognition

计算机科学 水准点(测量) 边距(机器学习) 一致性(知识库) 人工智能 适应(眼睛) 模式识别(心理学) 可靠性(半导体) 机器学习 特征(语言学) 源代码 特征提取 功率(物理) 语言学 物理 哲学 大地测量学 量子力学 光学 地理 操作系统
作者
Huikai Shao,Dexing Zhong
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:16: 5182-5194 被引量:12
标识
DOI:10.1109/tifs.2021.3125612
摘要

Benefiting from the advantages of safety and reliability, deep learning-based palmprint recognition has attracted widespread attention. However, previous methods are mainly focused on palmprint recognition in a single dataset. In some realistic applications, a certain number of palmprint images collected from multiple devices under different conditions may be available. Due to the existing gaps between different datasets, how to efficiently use them to obtain satisfactory performance is an important and challenging issue. In this paper, we propose a novel Learning with Partners (LWP) framework to improve the multi-source cross-dataset palmprint recognition. Multiple labeled source datasets and an unlabeled dataset are selected as partners to train two feature extractors FS and FT. Firstly, FS is trained as a teacher using labeled source samples to help learn FT. Then, adaptation loss is introduced to constrain the discrepancy between source and target datasets. To alleviate the negative impact of unlabeled target samples on the model, consistency loss including two distance losses are further proposed to correct the misleading in time. Finally, FT can extract adaptive features to match the target with sources. Extensive experiments are conducted on several benchmark palmprint databases and the results demonstrate that our proposed LWP can outperform other comparative baselines by a large margin. The codes are publicly available at http://gr.xjtu.edu.cn/web/bell.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
ccccc完成签到,获得积分10
2秒前
GQ完成签到,获得积分10
2秒前
快乐藤椒堡完成签到 ,获得积分10
3秒前
张靖松发布了新的文献求助10
4秒前
cxy发布了新的文献求助10
5秒前
谦让的雪枫完成签到 ,获得积分10
6秒前
NexusExplorer应助heyheybaby采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
6秒前
CAOHOU应助科研通管家采纳,获得10
6秒前
7秒前
Xhhaai应助科研通管家采纳,获得10
7秒前
7秒前
Hello应助科研通管家采纳,获得10
7秒前
7秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
天天快乐应助h哈采纳,获得10
7秒前
Hilda007应助科研通管家采纳,获得10
7秒前
8秒前
Xhhaai应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
CAOHOU应助科研通管家采纳,获得10
8秒前
8秒前
打打应助科研通管家采纳,获得10
8秒前
Xhhaai应助科研通管家采纳,获得10
8秒前
8秒前
漂亮的秋天完成签到 ,获得积分10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
魔幻惊蛰发布了新的文献求助30
8秒前
8秒前
情怀应助科研通管家采纳,获得10
8秒前
8秒前
Hilda007应助科研通管家采纳,获得10
8秒前
Xhhaai应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5794177
求助须知:如何正确求助?哪些是违规求助? 5753279
关于积分的说明 15488046
捐赠科研通 4920965
什么是DOI,文献DOI怎么找? 2649189
邀请新用户注册赠送积分活动 1596498
关于科研通互助平台的介绍 1550988