Evaluation and Analysis of Goodness of Fit for Water Quality Parameters Using Linear Regression Through the Internet-of-Things-Based Water Quality Monitoring System

水质 生化需氧量 环境科学 采样(信号处理) 污染 线性回归 水资源 水污染 拟合优度 计算机科学 环境监测 回归分析 水文学(农业) 环境工程 化学需氧量 废水 生态学 工程类 电信 机器学习 岩土工程 探测器 生物
作者
Harish H. Kenchannavar,Prasad M. Pujar,Raviraj M. Kulkarni,Umakant P. Kulkarni
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (16): 14400-14407 被引量:4
标识
DOI:10.1109/jiot.2021.3094724
摘要

Freshwater is the planet’s most important natural resource and is prone to pollution, making it necessary for real-time monitoring. The Internet-of-Things (IoT)-enabled water quality monitoring (WQM) system enables real-time monitoring of freshwater resources. The WQM uses physicochemical parameters, such as temperature, pH, dissolved oxygen, electrical conductivity, biochemical oxygen demand, nitrate, and total dissolved solids to control the water quality. The advent of IoT has proven its effectiveness in capturing, studying, and continuously transmitting environmental data in real time. Mineral-rich watersheds experience the exploitation of available resources in and around rivers, leading to urgent real-time monitoring of river water. The operation pollutes the water by mixing different types of toxic waste, namely, urban, industrial, and agricultural, making it unusable for human activities. In India, the traditional method of taking samples from the site, bringing them to the laboratory, and performing the analysis of the samples is in practice, it takes a day or two to get results and it does not happen in real time, causing water-borne diseases among inhabitants of watersheds. This article attempts to assess the water quality of the Ghataprabha river. Water samples are taken from the river via the WQM system from identified sampling points and subjected to linear regression analysis to estimate the relationships and goodness of fit between the parameters. Once the parameter relationship is known, a one-way ANOVA is applied to the water samples and the water quality is analyzed using the ANOVA hypothesis. Additionally, the river data set can be used to train the WQM system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
NexusExplorer应助冷酷莫茗采纳,获得10
1秒前
琢钰完成签到,获得积分10
1秒前
下雨天完成签到,获得积分10
2秒前
zs发布了新的文献求助10
2秒前
大模型应助wyw123采纳,获得10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
许锦程完成签到,获得积分10
4秒前
zzz完成签到,获得积分10
4秒前
mu完成签到,获得积分10
4秒前
琢钰发布了新的文献求助10
4秒前
4秒前
CipherSage应助进取拼搏采纳,获得10
4秒前
机灵飞兰完成签到,获得积分20
4秒前
5秒前
9527完成签到,获得积分10
5秒前
小小泽发布了新的文献求助10
6秒前
小葫芦完成签到,获得积分10
6秒前
传奇3应助陈业伟采纳,获得10
7秒前
科研通AI5应助YY采纳,获得10
7秒前
guoxingliu发布了新的文献求助200
7秒前
碧蓝的机器猫完成签到 ,获得积分10
7秒前
乐乐应助rio采纳,获得10
7秒前
TBHP发布了新的文献求助10
8秒前
Shann完成签到,获得积分10
8秒前
坚定背包发布了新的文献求助10
9秒前
9秒前
铃零完成签到,获得积分10
9秒前
椰子壳发布了新的文献求助10
9秒前
9秒前
段仁杰完成签到,获得积分10
10秒前
Melody完成签到,获得积分10
11秒前
Anderson123完成签到,获得积分10
11秒前
ZHOUCHENG完成签到,获得积分10
11秒前
ZHANGCHAOHANG完成签到,获得积分10
11秒前
小胡完成签到,获得积分10
11秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816654
求助须知:如何正确求助?哪些是违规求助? 3360106
关于积分的说明 10406570
捐赠科研通 3078132
什么是DOI,文献DOI怎么找? 1690563
邀请新用户注册赠送积分活动 813815
科研通“疑难数据库(出版商)”最低求助积分说明 767883