Lyapunov-Guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

Lyapunov优化 计算机科学 移动边缘计算 计算卸载 帧(网络) 在线算法 强化学习 数学优化 边缘计算 最优化问题 随机优化 李雅普诺夫函数 无线网络 随机规划 GSM演进的增强数据速率 无线 算法 人工智能 计算机网络 李雅普诺夫方程 李雅普诺夫指数 数学 物理 电信 非线性系统 量子力学 混乱的
作者
Suzhi Bi,Liang Huang,Hui Wang,Ying–Jun Angela Zhang
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:20 (11): 7519-7537 被引量:209
标识
DOI:10.1109/twc.2021.3085319
摘要

Opportunistic computation offloading is an effective method to improve the computation performance of mobile-edge computing (MEC) networks under dynamic edge environment. In this paper, we consider a multi-user MEC network with time-varying wireless channels and stochastic user task data arrivals in sequential time frames. In particular, we aim to design an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability and average power constraints. The online algorithm is practical in the sense that the decisions for each time frame are made without the assumption of knowing the future realizations of random channel conditions and data arrivals. We formulate the problem as a multi-stage stochastic mixed integer non-linear programming (MINLP) problem that jointly determines the binary offloading (each user computes the task either locally or at the edge server) and system resource allocation decisions in sequential time frames. To address the coupling in the decisions of different time frames, we propose a novel framework, named LyDROO, that combines the advantages of Lyapunov optimization and deep reinforcement learning (DRL). Specifically, LyDROO first applies Lyapunov optimization to decouple the multi-stage stochastic MINLP into deterministic per-frame MINLP subproblems. By doing so, it guarantees to satisfy all the long-term constraints by solving the per-frame subproblems that are much smaller in size. Then, LyDROO integrates model-based optimization and model-free DRL to solve the per-frame MINLP problems with very low computational complexity. Simulation results show that under various network setups, the proposed LyDROO achieves optimal computation performance while stabilizing all queues in the system. Besides, it induces very low computation time that is particularly suitable for real-time implementation in fast fading environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助细心的日记本采纳,获得30
刚刚
汉堡包应助英子采纳,获得10
刚刚
刚刚
陈陈陈1完成签到,获得积分10
1秒前
故酒应助煤炭不甜采纳,获得10
1秒前
找寻四氢叶酸完成签到,获得积分10
1秒前
1秒前
honoruru完成签到,获得积分10
2秒前
椋鸟应助温水采纳,获得10
3秒前
WW发布了新的文献求助10
3秒前
3秒前
3秒前
直率的凌香完成签到,获得积分10
3秒前
默默平文完成签到,获得积分10
3秒前
称心的猪完成签到,获得积分10
3秒前
优雅冰蝶完成签到,获得积分10
3秒前
张天翔发布了新的文献求助10
3秒前
gjt完成签到,获得积分10
4秒前
4秒前
无限向珊完成签到,获得积分10
4秒前
程程发布了新的文献求助10
5秒前
wanci应助13采纳,获得10
5秒前
喜来乐完成签到,获得积分10
6秒前
lululu完成签到,获得积分10
6秒前
sci发布了新的文献求助10
8秒前
称心的猪发布了新的文献求助10
8秒前
燕返完成签到,获得积分10
8秒前
易戚发布了新的文献求助10
9秒前
义气的行天完成签到,获得积分10
9秒前
刘一发布了新的文献求助10
9秒前
9秒前
不对也没错完成签到,获得积分10
9秒前
给我个二硫碘化钾完成签到,获得积分10
9秒前
无何不可完成签到 ,获得积分10
10秒前
灿烂千阳完成签到,获得积分10
10秒前
专注甜瓜完成签到,获得积分10
10秒前
优雅的寡人完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804701
求助须知:如何正确求助?哪些是违规求助? 3349568
关于积分的说明 10345175
捐赠科研通 3065662
什么是DOI,文献DOI怎么找? 1683192
邀请新用户注册赠送积分活动 808733
科研通“疑难数据库(出版商)”最低求助积分说明 764723