Analysis of Functional Brain Network in MDD Based on Improved Empirical Mode Decomposition With Resting State EEG Data

希尔伯特-黄变换 默认模式网络 脑电图 重性抑郁障碍 脑功能 静息状态功能磁共振成像 计算机科学 功能连接 神经科学 模式(计算机接口) 模式识别(心理学) 人工智能 心理学 认知 计算机视觉 滤波器(信号处理) 操作系统
作者
Xuexiao Shao,Shuting Sun,Jianxiu Li,Wenwen Kong,Jing Zhu,Xiaowei Li,Bin Hu
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:29: 1546-1556 被引量:37
标识
DOI:10.1109/tnsre.2021.3092140
摘要

At present, most brain functional studies are based on traditional frequency bands to explore the abnormal functional connections and topological organization of patients with depression. However, they ignore the characteristic relationship of electroencephalogram (EEG) signals in the time domain. Therefore, this paper proposes a network decomposition model based on Improved Empirical Mode Decomposition (EMD), it is suitable for time-frequency analysis of brain functional network. On the one hand, it solves the problem of mode mixing on original EMD method, especially on high-density EEG data. On the other hand, by building brain function networks on different intrinsic mode function (IMF), we can perform time-frequency analysis of brain function connections. It provides a new insight for brain function connectivity analysis of major depressive disorder (MDD). Experimental results found that the IMFs waveform decomposed by Improved EMD was more stable and the difference between IMFs was obvious, it indicated that the mode mixing can be effectively solved. Besides, the analysis of the brain network, we found that the changes in MDD functional connectivity on different IMFs, it may be related to the pathological changes for MDD. More statistical results on three network metrics proved that there were significant differences between MDD and normal controls (NC) group. In addition, the aberrant brain network structure of MDDs was also confirmed in the hubs characteristic. These findings may provide potential biomarkers for the clinical diagnosis of MDD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
慕青应助研友_闾丘枫采纳,获得10
4秒前
聪慧易文完成签到,获得积分20
4秒前
xzy998应助愉快的楷瑞采纳,获得10
6秒前
实验耗材发布了新的文献求助10
9秒前
忆仙姿完成签到,获得积分10
10秒前
冰魂应助萨摩耶采纳,获得10
11秒前
12秒前
12秒前
14秒前
14秒前
英姑应助成太采纳,获得10
14秒前
kmzzy发布了新的文献求助10
15秒前
YH完成签到,获得积分10
17秒前
17秒前
林莹发布了新的文献求助10
17秒前
柠檬精翠翠完成签到 ,获得积分10
19秒前
小丸子发布了新的文献求助10
19秒前
胡子完成签到,获得积分10
20秒前
21秒前
小马甲应助实验耗材采纳,获得10
23秒前
刻苦的小虾米完成签到 ,获得积分10
23秒前
kmzzy完成签到,获得积分10
24秒前
25秒前
成太发布了新的文献求助10
29秒前
37秒前
小丸子完成签到,获得积分10
38秒前
科研通AI5应助sparkle采纳,获得10
45秒前
zhuminghui完成签到,获得积分10
49秒前
54秒前
56秒前
林莹发布了新的文献求助30
56秒前
59秒前
dududu发布了新的文献求助10
1分钟前
keock发布了新的文献求助10
1分钟前
1分钟前
1分钟前
sparkle发布了新的文献求助10
1分钟前
英俊的铭应助CHB只争朝夕采纳,获得10
1分钟前
wss123456发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217326
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668059
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385