Technical Note: Dose prediction for head and neck radiotherapy using a three‐dimensional dense dilated U‐net architecture

放射治疗计划 头颈部 计算机科学 放射治疗 质量保证 管道(软件) 核医学 医学物理学 人工智能 医学 放射科 外科 病理 程序设计语言 外部质量评估
作者
Mary Gronberg,Tucker Netherton,Dong Joo Rhee,Laurence E. Court,Carlos Cárdenas
出处
期刊:Medical Physics [Wiley]
卷期号:48 (9): 5567-5573 被引量:37
标识
DOI:10.1002/mp.14827
摘要

Purpose Radiation therapy treatment planning is a time‐consuming and iterative manual process. Consequently, plan quality varies greatly between and within institutions. Artificial intelligence shows great promise in improving plan quality and reducing planning times. This technical note describes our participation in the American Association of Physicists in Medicine Open Knowledge‐Based Planning Challenge (OpenKBP), a competition to accurately predict radiation therapy dose distributions. Methods A three‐dimensional (3D) densely connected U‐Net with dilated convolutions was developed to predict 3D dose distributions given contoured CT images of head and neck patients as input. While traditional augmentation techniques such as rotations and translations were explored, it was found that training on random patches alone resulted in the greatest model performance. A custom‐weighted mean squared error loss function was employed. Finally, an ensemble of best‐performing networks was used to generate the final challenge predictions. Results Our team (SuperPod) placed second in the dose stream of the OpenKBP challenge. The average mean absolute difference between the predicted and clinical dose distributions of the testing dataset was 2.56 Gy. On average, the predicted normalized target DVH metrics were within 3% of the clinical plans, and the predicted organ at risk DVH metrics were within 2 Gy of the clinical plans. Conclusions The developed 3D dense dilated U‐Net architecture can accurately predict 3D radiotherapy dose distributions and can be used as part of a fully automated radiation therapy planning pipeline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻的绮烟完成签到,获得积分10
1秒前
酷波er应助苏苏苏采纳,获得30
2秒前
乐乐应助火星上的听云采纳,获得10
2秒前
Akim应助张远幸采纳,获得10
4秒前
SaSa完成签到,获得积分10
6秒前
淡新梅完成签到,获得积分10
7秒前
科研通AI5应助罗逸采纳,获得10
7秒前
7秒前
英俊的铭应助哈理老萝卜采纳,获得10
9秒前
10秒前
10秒前
谢谢完成签到,获得积分10
13秒前
13秒前
薛wen晶完成签到 ,获得积分10
14秒前
思源应助tianjiu采纳,获得10
15秒前
傻傻的哈密瓜完成签到,获得积分10
15秒前
qerovo发布了新的文献求助10
15秒前
道阻且长发布了新的文献求助10
15秒前
YYY完成签到,获得积分10
16秒前
18秒前
18秒前
20秒前
道阻且长完成签到,获得积分10
23秒前
xiha西希发布了新的文献求助10
23秒前
谢谢发布了新的文献求助10
24秒前
慕青应助愤怒的卓越采纳,获得10
25秒前
猪嗝铁铁发布了新的文献求助10
25秒前
Elytra发布了新的文献求助10
26秒前
Freiheit发布了新的文献求助10
29秒前
今后应助Aloha采纳,获得10
31秒前
32秒前
ruqayyah发布了新的文献求助10
32秒前
猪嗝铁铁完成签到,获得积分10
33秒前
苏苏苏发布了新的文献求助30
35秒前
小二郎应助那新采纳,获得10
37秒前
FYJY完成签到,获得积分10
38秒前
CC1219应助Freiheit采纳,获得10
39秒前
40秒前
41秒前
41秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808961
求助须知:如何正确求助?哪些是违规求助? 3353681
关于积分的说明 10366466
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810750
科研通“疑难数据库(出版商)”最低求助积分说明 766320