亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The mathematics of erythema: Development of machine learning models for artificial intelligence assisted measurement and severity scoring of radiation induced dermatitis

人工智能 卷积神经网络 机器学习 深度学习 计算机科学 试验装置 红斑 计算机辅助 分级(工程) 模式识别(心理学) 皮肤病科 医学 工程类 土木工程 程序设计语言
作者
Rahul Ranjan,Richard Partl,Ricarda Erhart,Nithin Kurup,Harald Schnidar
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2021.09.24.21264011
摘要

ABSTRACT Although significant advancements in computer-aided diagnostics using artificial intelligence (AI) have been made, to date, no viable method for radiation-induced skin reaction (RISR) analysis and classification is available. The objective of this single-center study was to develop machine learning and deep learning approaches using deep convolutional neural networks (CNNs) for automatic classification of RISRs according to the Common Terminology Criteria for Adverse Events (CTCAE) grading system. Scarletred ® Vision, a novel and state-of-the-art digital skin imaging method capable of remote monitoring and objective assessment of acute RISRs was used to convert 2D digital skin images using the CIELAB color space and conduct SEV* measurements. A set of different machine learning and deep convolutional neural network-based algorithms has been explored for the automatic classification of RISRs. A total of 2263 distinct images from 209 patients were analyzed for training and testing the machine learning and CNN algorithms. For a 2-class problem of healthy skin (grade 0) versus erythema (grade ≥ 1), all machine learning models produced an accuracy of above 70%, and the sensitivity and specificity of erythema recognition were 67-72% and 72-83%, respectively. The CNN produced a test accuracy of 74%, sensitivity of 66%, and specificity of 83% for predicting healthy and erythema cases. For the severity grade prediction of a 3-class problem (grade 0 versus 1 versus 2), the overall test accuracy was 60-67%, and the sensitivities were 56-82%, 35-59%, and 65-72%, respectively. For estimating the severity grade of each class, the CNN obtained an accuracy of 73%, 66%, and 82%, respectively. Ensemble learning combines several individual predictions to obtain a better generalization performance. Furthermore, we exploited ensemble learning by deploying a CNN model as a meta-learner. The ensemble CNN based on bagging and majority voting shows an accuracy, sensitivity and specificity of 87%, 90%, and 82% for a 2-class problem, respectively. For a 3-class problem, the ensemble CNN shows an overall accuracy of 66%, while for each grade (0, 1, and 2) accuracies were 76%, 69%, and 87%, sensitivities were 70%, 57%, and 71%, and specificities were 78%, 75%, and 95%, respectively. This study is the first to focus on erythema in radiation-dermatitis and produces benchmark results using machine learning models. The outcome of this study validates that the proposed system can act as a pre-screening and decision support tool for oncologists or patients to provide fast, reliable, and efficient assessment of erythema grading.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助niko采纳,获得10
17秒前
Owen应助niko采纳,获得10
17秒前
天天快乐应助niko采纳,获得10
17秒前
隐形曼青应助niko采纳,获得10
17秒前
酷波er应助niko采纳,获得10
17秒前
天天快乐应助niko采纳,获得10
17秒前
bkagyin应助niko采纳,获得10
17秒前
蓝华完成签到 ,获得积分10
23秒前
31秒前
31秒前
31秒前
31秒前
31秒前
32秒前
球球子完成签到,获得积分10
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
33秒前
33秒前
33秒前
33秒前
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
34秒前
35秒前
35秒前
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534299
求助须知:如何正确求助?哪些是违规求助? 4622348
关于积分的说明 14582560
捐赠科研通 4562573
什么是DOI,文献DOI怎么找? 2500245
邀请新用户注册赠送积分活动 1479794
关于科研通互助平台的介绍 1450962