Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives

电容器 电介质 储能 功率密度 薄膜电容器 聚合物电容器 锆钛酸铅 超级电容器 光电子学 材料科学 工程物理 电气工程 化学 铁电性 电解电容器 电容 电压 功率(物理) 工程类 物理 量子力学 物理化学 电极
作者
Ge Wang,Zhilun Lu,Yong Li,Linhao Li,Hongfen Ji,Antonio Feteira,Di Zhou,Dawei Wang,Shujun Zhang,Ian M. Reaney
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:121 (10): 6124-6172 被引量:887
标识
DOI:10.1021/acs.chemrev.0c01264
摘要

Materials exhibiting high energy/power density are currently needed to meet the growing demand of portable electronics, electric vehicles and large-scale energy storage devices. The highest energy densities are achieved for fuel cells, batteries, and supercapacitors, but conventional dielectric capacitors are receiving increased attention for pulsed power applications due to their high power density and their fast charge–discharge speed. The key to high energy density in dielectric capacitors is a large maximum but small remanent (zero in the case of linear dielectrics) polarization and a high electric breakdown strength. Polymer dielectric capacitors offer high power/energy density for applications at room temperature, but above 100 °C they are unreliable and suffer from dielectric breakdown. For high-temperature applications, therefore, dielectric ceramics are the only feasible alternative. Lead-based ceramics such as La-doped lead zirconate titanate exhibit good energy storage properties, but their toxicity raises concern over their use in consumer applications, where capacitors are exclusively lead free. Lead-free compositions with superior power density are thus required. In this paper, we introduce the fundamental principles of energy storage in dielectrics. We discuss key factors to improve energy storage properties such as the control of local structure, phase assemblage, dielectric layer thickness, microstructure, conductivity, and electrical homogeneity through the choice of base systems, dopants, and alloying additions, followed by a comprehensive review of the state-of-the-art. Finally, we comment on the future requirements for new materials in high power/energy density capacitor applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
东哥发布了新的文献求助10
1秒前
3秒前
evefei完成签到,获得积分10
3秒前
Angela完成签到,获得积分10
5秒前
7秒前
赘婿应助Falling采纳,获得10
7秒前
Running发布了新的文献求助10
7秒前
peekaboo完成签到,获得积分10
8秒前
8秒前
Xiaopei发布了新的文献求助10
8秒前
茕凡桃七完成签到,获得积分10
10秒前
sunshine完成签到,获得积分10
11秒前
12秒前
酷波er应助超帅的傀斗采纳,获得10
15秒前
Xiaopei完成签到,获得积分10
16秒前
啥,这都是啥完成签到,获得积分10
18秒前
Falling完成签到,获得积分10
19秒前
科研通AI5应助小仙采纳,获得10
19秒前
李爱国应助Luna采纳,获得10
20秒前
21秒前
22秒前
凯凯完成签到,获得积分10
22秒前
23秒前
W~舞完成签到,获得积分10
24秒前
Cdy完成签到,获得积分10
24秒前
无奈世立发布了新的文献求助10
25秒前
雪白浩天完成签到,获得积分10
25秒前
ding应助grumpysquirel采纳,获得10
26秒前
南风完成签到 ,获得积分10
26秒前
27秒前
陈甸甸发布了新的文献求助10
29秒前
Persevere完成签到,获得积分10
29秒前
啦啦啦啦完成签到,获得积分10
29秒前
cdercder应助tjfwg采纳,获得10
30秒前
华仔完成签到,获得积分10
31秒前
正直的如凡完成签到,获得积分10
32秒前
32秒前
32秒前
ZDY完成签到,获得积分10
33秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801189
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330761
捐赠科研通 3063197
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807586
科研通“疑难数据库(出版商)”最低求助积分说明 763729