Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives

电容器 电介质 储能 功率密度 薄膜电容器 聚合物电容器 锆钛酸铅 超级电容器 光电子学 材料科学 工程物理 电气工程 化学 铁电性 电解电容器 电容 电压 功率(物理) 工程类 物理 量子力学 物理化学 电极
作者
Ge Wang,Zhilun Lu,Yong Li,Linhao Li,Hongfen Ji,Antonio Feteira,Di Zhou,Dawei Wang,Shujun Zhang,Ian M. Reaney
出处
期刊:Chemical Reviews [American Chemical Society]
卷期号:121 (10): 6124-6172 被引量:1013
标识
DOI:10.1021/acs.chemrev.0c01264
摘要

Materials exhibiting high energy/power density are currently needed to meet the growing demand of portable electronics, electric vehicles and large-scale energy storage devices. The highest energy densities are achieved for fuel cells, batteries, and supercapacitors, but conventional dielectric capacitors are receiving increased attention for pulsed power applications due to their high power density and their fast charge–discharge speed. The key to high energy density in dielectric capacitors is a large maximum but small remanent (zero in the case of linear dielectrics) polarization and a high electric breakdown strength. Polymer dielectric capacitors offer high power/energy density for applications at room temperature, but above 100 °C they are unreliable and suffer from dielectric breakdown. For high-temperature applications, therefore, dielectric ceramics are the only feasible alternative. Lead-based ceramics such as La-doped lead zirconate titanate exhibit good energy storage properties, but their toxicity raises concern over their use in consumer applications, where capacitors are exclusively lead free. Lead-free compositions with superior power density are thus required. In this paper, we introduce the fundamental principles of energy storage in dielectrics. We discuss key factors to improve energy storage properties such as the control of local structure, phase assemblage, dielectric layer thickness, microstructure, conductivity, and electrical homogeneity through the choice of base systems, dopants, and alloying additions, followed by a comprehensive review of the state-of-the-art. Finally, we comment on the future requirements for new materials in high power/energy density capacitor applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iiiiiur发布了新的文献求助10
刚刚
evak发布了新的文献求助10
刚刚
1秒前
lily发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
gogogo发布了新的文献求助10
3秒前
4秒前
深情安青应助Yan采纳,获得10
5秒前
wan完成签到,获得积分10
5秒前
彭于晏应助这大概是采纳,获得10
6秒前
科研通AI2S应助小胖子采纳,获得30
7秒前
子卿发布了新的文献求助10
7秒前
小纸人发布了新的文献求助10
8秒前
General完成签到 ,获得积分10
8秒前
wan发布了新的文献求助30
8秒前
10秒前
哇哈哈完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
叽里呱啦完成签到 ,获得积分10
11秒前
沉醉完成签到 ,获得积分10
11秒前
遇见发布了新的文献求助10
11秒前
橙子完成签到 ,获得积分10
11秒前
香蕉觅云应助风中的茉莉采纳,获得10
13秒前
iiiiiur完成签到,获得积分10
13秒前
123完成签到,获得积分10
15秒前
15秒前
Jeamren发布了新的文献求助10
15秒前
小纸人完成签到,获得积分10
16秒前
17秒前
20秒前
Tracey16完成签到,获得积分10
22秒前
23秒前
23秒前
kk发布了新的文献求助10
24秒前
情怀应助GL采纳,获得10
27秒前
lisen发布了新的文献求助10
27秒前
深情安青应助lqz07采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
An account of the genus Dioscorea in the East, Part 2. The species which twine to the right 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4267735
求助须知:如何正确求助?哪些是违规求助? 3799107
关于积分的说明 11908166
捐赠科研通 3445785
什么是DOI,文献DOI怎么找? 1890422
邀请新用户注册赠送积分活动 941184
科研通“疑难数据库(出版商)”最低求助积分说明 845503