Object‐based large‐scale terrain classification combined with segmentation optimization and terrain features: A case study in China

地形 地形地貌 数字高程模型 随机森林 分割 人工智能 地图学 计算机科学 基于对象 比例(比率) 遥感 地质学 地理 模式识别(心理学) 对象(语法)
作者
Jiaming Na,Hu Ding,Wufan Zhao,Kai Liu,Guoan Tang,Norbert Pfeifer
出处
期刊:Transactions in Gis [Wiley]
卷期号:25 (6): 2939-2962 被引量:35
标识
DOI:10.1111/tgis.12795
摘要

Abstract Terrain classification involves essential tasks in geomorphology, landscape investigation, regional planning, and hazard prediction. Most existing methods are based on a simple thresholding approach. However, such an approach is limited in terms of accuracy and robustness, especially for large‐scale tasks. To overcome this limitation, this article proposes an object‐based framework combined with the random forest. Six terrain factors, namely terrain relief, surface roughness, elevation, elevation coefficient variation, shaded relief, and accumulative curvature, are first selected by correlation analysis using Sheffield's entropy. The obtained segmentation result is then optimized by Moran's I and the weighted variance, combining both terrain factors and textures derived from digital elevation models. Then, the features are selected among both terrain factors and their gray‐level co‐occurrence matrix textures. Finally, the features are fed into the random forest classifier. Seven landform types are classified, including plain, hill, low mountain, low‐middle mountain, high‐middle mountain, high mountain, and extremely high mountain. A case study in China was conducted and achieved an overall accuracy of 80.53% compared with the official landform atlas, which is better performance over the compared semi‐automatic methods. The transferability of our framework was further confirmed by an additional application in provincial‐scale mapping with a different classification system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳的纸鹤关注了科研通微信公众号
刚刚
李依婷发布了新的文献求助10
刚刚
LanceHayward完成签到 ,获得积分10
1秒前
科研通AI2S应助畅快的豆芽采纳,获得10
1秒前
Kyle发布了新的文献求助10
1秒前
奋斗草莓完成签到,获得积分10
1秒前
胡萝卜z完成签到 ,获得积分10
2秒前
2秒前
Jasper应助muyassar采纳,获得10
2秒前
李健应助文俊伟采纳,获得10
2秒前
3秒前
FashionBoy应助万幸鹿采纳,获得10
4秒前
查资料发布了新的文献求助10
4秒前
科研通AI5应助钟哈哈采纳,获得10
4秒前
4秒前
chen驳回了usr12应助
4秒前
5秒前
华仔应助营养快炫采纳,获得10
5秒前
6秒前
SciGPT应助兰兰猪头采纳,获得10
6秒前
阳光听安完成签到,获得积分20
6秒前
7秒前
lllooo发布了新的文献求助10
7秒前
anasy给啊薇儿的求助进行了留言
7秒前
8秒前
寂寞的尔丝完成签到 ,获得积分10
8秒前
唯美完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
和谐如风发布了新的文献求助10
10秒前
11秒前
科研通AI6应助Carpe采纳,获得10
11秒前
烟花应助坦率的可仁采纳,获得10
11秒前
12秒前
唯美发布了新的文献求助10
12秒前
12秒前
刘婉敏应助rym0404采纳,获得10
13秒前
Zephyr发布了新的文献求助30
14秒前
小杭76应助道德精采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5158392
求助须知:如何正确求助?哪些是违规求助? 4353257
关于积分的说明 13554463
捐赠科研通 4196677
什么是DOI,文献DOI怎么找? 2301746
邀请新用户注册赠送积分活动 1301491
关于科研通互助平台的介绍 1246730