神经科学
谷氨酸的
去极化
突触后电位
致电离效应
γ-氨基丁酸受体
神经传递
兴奋性突触后电位
加巴能
稳态可塑性
突触可塑性
化学
生物
谷氨酸受体
受体
抑制性突触后电位
变质塑性
生物物理学
生物化学
作者
Weiyuan Huang,Yue Ke,Jianping Zhu,Shuai Liu,Jin Cong,Hailin Ye,Yanwu Guo,Kewan Wang,Zhenhai Zhang,Wenxiang Meng,Tianming Gao,Heiko J. Luhmann,Werner Kilb,Rongqing Chen
出处
期刊:Cell Reports
[Elsevier]
日期:2021-07-01
卷期号:36 (3): 109404-109404
被引量:16
标识
DOI:10.1016/j.celrep.2021.109404
摘要
Glutamatergic and GABAergic synaptic transmission controls excitation and inhibition of postsynaptic neurons, whereas activity of ion channels modulates neuronal intrinsic excitability. However, it is unclear how excessive neuronal excitation affects intrinsic inhibition to regain homeostatic stability under physiological or pathophysiological conditions. Here, we report that a seizure-like sustained depolarization can induce short-term inhibition of hippocampal CA3 neurons via a mechanism of membrane shunting. This depolarization-induced shunting inhibition (DShI) mediates a non-synaptic, but neuronal intrinsic, short-term plasticity that is able to suppress action potential generation and postsynaptic responses by activated ionotropic receptors. We demonstrate that the TRESK channel significantly contributes to DShI. Disruption of DShI by genetic knockout of TRESK exacerbates the sensitivity and severity of epileptic seizures of mice, whereas overexpression of TRESK attenuates seizures. In summary, these results uncover a type of homeostatic intrinsic plasticity and its underlying mechanism. TRESK might represent a therapeutic target for antiepileptic drugs.
科研通智能强力驱动
Strongly Powered by AbleSci AI