Atrial Fibrillation Prediction from Critically Ill Sepsis Patients

心房颤动 医学 病危 败血症 重症监护室 支持向量机 重症监护 心脏病学 内科学 重症监护医学 人工智能 计算机科学
作者
Syed Khairul Bashar,Eric Y. Ding,Allan J. Walkey,David D. McManus,Ki H. Chon
出处
期刊:Biosensors [MDPI AG]
卷期号:11 (8): 269-269 被引量:13
标识
DOI:10.3390/bios11080269
摘要

Sepsis is defined by life-threatening organ dysfunction during infection and is the leading cause of death in hospitals. During sepsis, there is a high risk that new onset of atrial fibrillation (AF) can occur, which is associated with significant morbidity and mortality. Consequently, early prediction of AF during sepsis would allow testing of interventions in the intensive care unit (ICU) to prevent AF and its severe complications. In this paper, we present a novel automated AF prediction algorithm for critically ill sepsis patients using electrocardiogram (ECG) signals. From the heart rate signal collected from 5-min ECG, feature extraction is performed using the traditional time, frequency, and nonlinear domain methods. Moreover, variable frequency complex demodulation and tunable Q-factor wavelet-transform-based time-frequency methods are applied to extract novel features from the heart rate signal. Using a selected feature subset, several machine learning classifiers, including support vector machine (SVM) and random forest (RF), were trained using only the 2001 Computers in Cardiology data set. For testing the proposed method, 50 critically ill ICU subjects from the Medical Information Mart for Intensive Care (MIMIC) III database were used in this study. Using distinct and independent testing data from MIMIC III, the SVM achieved 80% sensitivity, 100% specificity, 90% accuracy, 100% positive predictive value, and 83.33% negative predictive value for predicting AF immediately prior to the onset of AF, while the RF achieved 88% AF prediction accuracy. When we analyzed how much in advance we can predict AF events in critically ill sepsis patients, the algorithm achieved 80% accuracy for predicting AF events 10 min early. Our algorithm outperformed a state-of-the-art method for predicting AF in ICU patients, further demonstrating the efficacy of our proposed method. The annotations of patients' AF transition information will be made publicly available for other investigators. Our algorithm to predict AF onset is applicable for any ECG modality including patch electrodes and wearables, including Holter, loop recorder, and implantable devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助避橙采纳,获得10
1秒前
小樊同学完成签到,获得积分10
1秒前
兴奋鼠标完成签到,获得积分10
1秒前
子车茗应助风雨中飘摇采纳,获得30
2秒前
大模型应助补作业的糖豆采纳,获得10
2秒前
2秒前
尉迟希望应助拼搏的绿旋采纳,获得10
2秒前
2秒前
记得接电话完成签到,获得积分10
2秒前
RNAPW完成签到,获得积分10
3秒前
3秒前
11完成签到,获得积分10
4秒前
4秒前
5秒前
赵yy应助五等分的商鞅采纳,获得10
5秒前
devil完成签到,获得积分10
5秒前
lulu发布了新的文献求助10
7秒前
绿海完成签到,获得积分10
8秒前
8秒前
8秒前
龙江游侠完成签到,获得积分10
9秒前
MJS发布了新的文献求助30
9秒前
甜崽小肉丸完成签到,获得积分20
9秒前
门里三条发布了新的文献求助10
10秒前
hclcindy完成签到 ,获得积分10
10秒前
还没想好昵称完成签到,获得积分10
10秒前
曾医生发布了新的文献求助20
10秒前
lyang发布了新的文献求助10
11秒前
仓促过客发布了新的文献求助10
11秒前
12秒前
溜溜溜溜溜完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
14秒前
Mic应助含糊的紫文采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286035
求助须知:如何正确求助?哪些是违规求助? 4438924
关于积分的说明 13819501
捐赠科研通 4320540
什么是DOI,文献DOI怎么找? 2371517
邀请新用户注册赠送积分活动 1367063
关于科研通互助平台的介绍 1330462