A position-aware transformer for image captioning

变压器
作者
Zelin Deng,Bo Zhou,Pei He,Jianfeng Huang,Osama Alfarraj,Amr Tolba
出处
期刊:Cmc-computers Materials & Continua 卷期号:70 (1): 2005-2021
标识
DOI:10.32604/cmc.2022.019328
摘要

Image captioning aims to generate a corresponding description of an image. In recent years, neural encoder-decoder models have been the dominant approaches, in which the Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM) are used to translate an image into a natural language description. Among these approaches, the visual attention mechanisms are widely used to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. However, most conventional visual attention mechanisms are based on high-level image features, ignoring the effects of other image features, and giving insufficient consideration to the relative positions between image features. In this work, we propose a Position-Aware Transformer model with image-feature attention and position-aware attention mechanisms for the above problems. The image-feature attention firstly extracts multi-level features by using Feature Pyramid Network (FPN), then utilizes the scaled-dot-product to fuse these features, which enables our model to detect objects of different scales in the image more effectively without increasing parameters. In the position-aware attention mechanism, the relative positions between image features are obtained at first, afterwards the relative positions are incorporated into the original image features to generate captions more accurately. Experiments are carried out on the MSCOCO dataset and our approach achieves competitive BLEU-4, METEOR, ROUGE-L, CIDEr scores compared with some state-of-the-art approaches, demonstrating the effectiveness of our approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小欧文完成签到,获得积分10
1秒前
等待盼雁发布了新的文献求助10
2秒前
我我我完成签到,获得积分20
3秒前
3秒前
协和_子鱼发布了新的文献求助10
4秒前
科研通AI5应助世上无难事采纳,获得10
4秒前
5秒前
研友_MLJpKZ完成签到,获得积分10
7秒前
w934420513发布了新的文献求助10
8秒前
852应助提拉敏苏采纳,获得30
12秒前
17秒前
执着的钢笔完成签到,获得积分20
18秒前
21秒前
22秒前
23秒前
26秒前
雾野发布了新的文献求助10
27秒前
胖头鱼发布了新的文献求助10
28秒前
28秒前
29秒前
FashionBoy应助ira采纳,获得10
30秒前
完美冷安完成签到,获得积分10
32秒前
动听半雪发布了新的文献求助10
34秒前
Owen应助浩二采纳,获得10
35秒前
科研铁人完成签到 ,获得积分10
36秒前
37秒前
健康豆芽菜完成签到 ,获得积分10
40秒前
机智如霜完成签到,获得积分10
40秒前
QQ完成签到 ,获得积分10
42秒前
44秒前
李爱国应助酷炫的水蓝采纳,获得10
44秒前
大模型应助西门子云采纳,获得10
44秒前
Aries发布了新的文献求助10
44秒前
坚定睫毛膏完成签到,获得积分20
45秒前
云鹏完成签到,获得积分10
46秒前
49秒前
49秒前
49秒前
小王发布了新的文献求助10
50秒前
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323865
关于积分的说明 10216275
捐赠科研通 3039094
什么是DOI,文献DOI怎么找? 1667782
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366