Few-Shot Learning With a Strong Teacher

机器学习 一次性 弹丸 计算机科学 人工智能 模式识别(心理学) 机械工程 工程类 有机化学 化学
作者
Han-Jia Ye,Ming Lu,De-Chuan Zhan,Wei‐Lun Chao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (3): 1425-1440 被引量:19
标识
DOI:10.1109/tpami.2022.3160362
摘要

Few-shot learning (FSL) aims to generate a classifier using limited labeled examples. Many existing works take the meta-learning approach, constructing a few-shot learner (a meta-model) that can learn from few-shot examples to generate a classifier. Typically, the few-shot learner is constructed or meta-trained by sampling multiple few-shot tasks in turn and optimizing the few-shot learner's performance in generating classifiers for those tasks. The performance is measured by how well the resulting classifiers classify the test (i.e., query) examples of those tasks. In this paper, we point out two potential weaknesses of this approach. First, the sampled query examples may not provide sufficient supervision for meta-training the few-shot learner. Second, the effectiveness of meta-learning diminishes sharply with the increasing number of shots (i.e., the number of training examples per class). To resolve these issues, we propose a novel meta-training objective for the few-shot learner, which is to encourage the few-shot learner to generate classifiers that perform like strong classifiers. Concretely, we associate each sampled few-shot task with a strong classifier, which is trained with ample labeled examples. The strong classifiers can be seen as the target classifiers that we hope the few-shot learner to generate given few-shot examples, and we use the strong classifiers to supervise the few-shot learner. We present an efficient way to construct the strong classifier, making our proposed objective an easily plug-and-play term to existing meta-learning based FSL methods. We validate our approach, (Learning with A Strong Teacher for few-SHOT learning), in combinations with many representative meta-learning methods. On several benchmark datasets including miniImageNet and tieredImageNet, our approach leads to a notable improvement across a variety of tasks. More importantly, with our approach, meta-learning based FSL methods can consistently outperform non-meta-learning based methods at different numbers of shots, even in many-shot settings, greatly strengthening their applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊熊爱骑车完成签到,获得积分20
1秒前
2秒前
wx完成签到,获得积分10
3秒前
小石完成签到 ,获得积分10
3秒前
Ta完成签到 ,获得积分10
3秒前
iioii发布了新的文献求助10
4秒前
memory发布了新的文献求助10
6秒前
顾矜应助无脚鸟采纳,获得10
6秒前
爆米花应助平淡茈采纳,获得10
9秒前
luanzhaohui发布了新的文献求助50
11秒前
11秒前
鸣隐完成签到,获得积分10
11秒前
12秒前
14秒前
14秒前
Mike完成签到,获得积分20
14秒前
15秒前
Jasper应助加减乘除采纳,获得10
16秒前
谨慎的豆芽完成签到,获得积分10
16秒前
uu完成签到,获得积分10
17秒前
太叔丹翠完成签到,获得积分10
17秒前
jiangqin123发布了新的文献求助10
18秒前
lemon完成签到,获得积分10
18秒前
和谐的孱发布了新的文献求助10
19秒前
快乐的小阿基完成签到,获得积分10
19秒前
19秒前
黑豆也应助小鹿5460采纳,获得10
20秒前
SCI的芷蝶发布了新的文献求助10
20秒前
luanzhaohui完成签到,获得积分10
20秒前
20秒前
现实的航空完成签到,获得积分10
21秒前
zho发布了新的文献求助10
21秒前
太叔丹翠发布了新的文献求助10
21秒前
22秒前
23秒前
科研兄发布了新的文献求助10
23秒前
25秒前
岁岁完成签到 ,获得积分10
25秒前
Niu发布了新的文献求助30
27秒前
斯文败类应助雪白雪旋采纳,获得10
28秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805349
求助须知:如何正确求助?哪些是违规求助? 3350319
关于积分的说明 10348395
捐赠科研通 3066218
什么是DOI,文献DOI怎么找? 1683622
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225