Weighted Fuzzy Clustering for Time Series With Trend-Based Information Granulation

动态时间归整 粒度计算 聚类分析 系列(地层学) 数据挖掘 粒度 计算机科学 维数之咒 模糊聚类 时间序列 模糊逻辑 相似性(几何) 模式识别(心理学) 人工智能 机器学习 粗集 古生物学 生物 操作系统 图像(数学)
作者
Hongyue Guo,Mengjun Wan,Lidong Wang,Xiaodong Liu,Witold Pedrycz
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (2): 903-914 被引量:9
标识
DOI:10.1109/tcyb.2022.3190705
摘要

The highly dimensional characteristic of time series brings many challenges on direct mining time series, such as high cost in time and space. Granular computing provides a potential strategy for representing and dealing with time series at a higher level of abstraction. In this study, we propose an information granulation-based weighted fuzzy C -means (wFCM) method to realize time-series clustering, which could avoid high dimensionality processing and provide a concise and visible granular prototype for each cluster. In this method, each time series is first transformed into a series of information granules with trend following the principle of justifiable granularity. The formed granular time series can well capture the main features lying in the original time series and help realize dimensionality reduction. Then, the wFCM method is developed to complete time-series clustering in the granular space. Here, the dynamic time warping (DTW) is extended to capture the similarity for trend-based granular time series. Furthermore, the weighted DTW barycenter averaging is introduced to derive prototypes presented in a granular format, capturing the level, the fluctuation, and the changing trend, which are meaningful and understandable clustering results. The experiments conducted on real-world datasets coming from the UCR time-series database and Chinese stocks are presented to illustrate the effectiveness and practicality of the designed time-series clustering model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴伊玟发布了新的文献求助10
1秒前
1秒前
bc应助Hhh采纳,获得30
2秒前
djxdjt完成签到,获得积分10
2秒前
2秒前
2秒前
顾矜应助YYMM采纳,获得10
3秒前
gr完成签到,获得积分10
3秒前
Yang完成签到,获得积分10
3秒前
Xin发布了新的文献求助10
4秒前
里卡发布了新的文献求助10
4秒前
77完成签到,获得积分10
5秒前
潇潇完成签到 ,获得积分10
6秒前
lxz发布了新的文献求助10
6秒前
万茜完成签到,获得积分20
7秒前
阿杜阿杜发布了新的文献求助10
8秒前
ArielXu应助123采纳,获得10
9秒前
9秒前
9秒前
鲜于夜白完成签到,获得积分10
13秒前
科研通AI5应助CZYW采纳,获得10
14秒前
14秒前
real339完成签到,获得积分10
14秒前
15秒前
15秒前
ZWTH完成签到,获得积分10
15秒前
今后应助kong采纳,获得10
16秒前
17秒前
17秒前
烂漫的易蓉完成签到,获得积分10
17秒前
yhnsag发布了新的文献求助10
18秒前
18秒前
灰鸽舞发布了新的文献求助10
19秒前
恐龙植树发布了新的文献求助10
19秒前
鲨鱼鱼发布了新的文献求助30
21秒前
21秒前
天天发布了新的文献求助10
22秒前
猛龙发布了新的文献求助10
22秒前
MYhang完成签到,获得积分10
30秒前
JIANYOUFU完成签到,获得积分10
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814820
求助须知:如何正确求助?哪些是违规求助? 3358947
关于积分的说明 10398754
捐赠科研通 3076401
什么是DOI,文献DOI怎么找? 1689803
邀请新用户注册赠送积分活动 813303
科研通“疑难数据库(出版商)”最低求助积分说明 767599