Realistic Mixing Miniature Scene Hyperspectral Unmixing: From Benchmark Datasets to Autonomous Unmixing

高光谱成像 计算机科学 像素 人工智能 模式识别(心理学) 水准点(测量) 基本事实 遥感 图像分辨率 计算机视觉 地理 大地测量学
作者
Chunyang Cui,Yanfei Zhong,Xinyu Wang,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:4
标识
DOI:10.1109/tgrs.2023.3236677
摘要

Mixed pixels that contain more than one material type are common in mid/low spatial resolution remote sensing imagery. Hyperspectral unmixing is aimed at decomposing the mixed pixels into endmembers and abundances. However, there are few datasets that are suitable for quantitatively evaluating unmixing accuracies, and the ground-truth abundances of the existing datasets are often generated in an approximate way. To address the lack of real unmixing datasets for quantitative evaluation, we built the realistic mixing miniature scenes (RMMS) dataset, which can be used to quantitatively evaluate the unmixing accuracy of different algorithms. The RMMS dataset consists of a simple mixture scene with homogeneous flat materials and a complex mixture scene with 3-D structural features. The features of the RMMS dataset also take point, line, and polygon characteristics into consideration, and the spectral similarity of the materials increases the challenge of the spectral unmixing. In the RMMS dataset, due to the multiscale observation characteristics of the spatiotemporal scanning modality, it can avoid the registration error between RGB and hyperspectral data, and it can ensure that the endmembers are pure pixels. Most of the autonomous hyperspectral unmixing algorithms focus on solving some of the unmixing problems and have difficulty achieving fully autonomous hyperspectral unmixing (FAHU). In this article, to overcome this shortcoming, a fully autonomous hyperspectral unmixing method called FAHU is proposed to take advantage of the spatial information. Some of the state-of-the-art autonomous hyperspectral unmixing algorithms are used to evaluate the performance with the RMMS dataset, and the experimental results show the advantages and disadvantages of the different autonomous unmixing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
hyp7347发布了新的文献求助10
4秒前
kkkkkk完成签到,获得积分10
6秒前
7秒前
7秒前
orixero应助ma采纳,获得10
8秒前
是谁还没睡完成签到 ,获得积分10
10秒前
12秒前
ma完成签到,获得积分10
14秒前
17秒前
yliaoyou完成签到,获得积分10
19秒前
温暖的涵易应助NN采纳,获得30
22秒前
黄辉冯完成签到,获得积分10
25秒前
脑洞疼应助wlei采纳,获得10
26秒前
gambling完成签到 ,获得积分20
27秒前
scm完成签到,获得积分10
31秒前
科研通AI5应助小纯牛奶采纳,获得10
32秒前
热心市民完成签到,获得积分0
32秒前
Wudifairy完成签到,获得积分10
32秒前
34秒前
吃紫薯的鱼完成签到,获得积分10
36秒前
38秒前
YOY发布了新的文献求助10
38秒前
711moiii完成签到,获得积分10
38秒前
39秒前
隐形曼青应助黄石采纳,获得10
41秒前
陈JY完成签到 ,获得积分10
41秒前
科研通AI5应助ljs采纳,获得10
42秒前
HEAUBOOK应助峡星牙采纳,获得30
42秒前
啊啊啊发布了新的文献求助10
42秒前
wlei发布了新的文献求助10
44秒前
44秒前
芦荟板蓝根完成签到,获得积分10
49秒前
49秒前
50秒前
Holly完成签到,获得积分10
51秒前
阳光的初瑶完成签到,获得积分20
55秒前
Ling完成签到,获得积分10
56秒前
57秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799165
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321911
捐赠科研通 3061287
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445