WaveFormer: Wavelet Transformer for Noise-Robust Video Inpainting

修补 变压器 小波 计算机科学 人工智能 计算机视觉 工程类 图像(数学) 电气工程 电压
作者
Zhiliang Wu,Changchang Sun,Hanyu Xuan,Gaowen Liu,Yan Yan
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (6): 6180-6188 被引量:9
标识
DOI:10.1609/aaai.v38i6.28435
摘要

Video inpainting aims to fill in the missing regions of the video frames with plausible content. Benefiting from the outstanding long-range modeling capacity, the transformer-based models have achieved unprecedented performance regarding inpainting quality. Essentially, coherent contents from all the frames along both spatial and temporal dimensions are concerned by a patch-wise attention module, and then the missing contents are generated based on the attention-weighted summation. In this way, attention retrieval accuracy has become the main bottleneck to improve the video inpainting performance, where the factors affecting attention calculation should be explored to maximize the advantages of transformer. Towards this end, in this paper, we theoretically certificate that noise is the culprit that entangles the process of attention calculation. Meanwhile, we propose a novel wavelet transformer network with noise robustness for video inpainting, named WaveFormer. Unlike existing transformer-based methods that utilize the whole embeddings to calculate the attention, our WaveFormer first separates the noise existing in the embedding into high-frequency components by introducing the Discrete Wavelet Transform (DWT), and then adopts clean low-frequency components to calculate the attention. In this way, the impact of noise on attention computation can be greatly mitigated and the missing content regarding different frequencies can be generated by sharing the calculated attention. Extensive experiments validate the superior performance of our method over state-of-the-art baselines both qualitatively and quantitatively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
应夏山发布了新的文献求助10
刚刚
科研通AI5应助ZHH采纳,获得10
刚刚
科研通AI5应助风中的安珊采纳,获得10
刚刚
2秒前
keaid完成签到 ,获得积分10
2秒前
2秒前
kangjie123完成签到,获得积分10
4秒前
豆豆完成签到,获得积分10
4秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
www发布了新的文献求助10
6秒前
6秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
6秒前
aa发布了新的文献求助30
7秒前
7秒前
8秒前
英姑应助Aeon采纳,获得50
9秒前
许嘉娣完成签到,获得积分10
9秒前
ding应助润泉采纳,获得10
10秒前
11秒前
11秒前
科研通AI5应助猪猪hero采纳,获得30
11秒前
Owen应助王359采纳,获得30
12秒前
华安完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
陈汤完成签到,获得积分10
13秒前
Lance先生发布了新的文献求助10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409