Anomaly Detection for In-Vehicle Network Using Self-Supervised Learning With Vehicle-Cloud Collaboration Update

计算机科学 异常检测 云计算 数据挖掘 入侵检测系统 实时计算 人工智能 机器学习 操作系统
作者
Jinhui Cao,Xiaoqiang Di,Xu Liu,Jinqing Li,Zhi Li,Liang Zhao,Ammar Hawbani,Mohsen Guizani
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 7454-7466 被引量:2
标识
DOI:10.1109/tits.2024.3351438
摘要

With the increasing communications between the In-Vehicle Networks (IVNs) and external networks, security has become a stringent problem. In addition, the controller area network bus in IVN lacks security mechanisms by design, which is vulnerable to various attacks. Thus, it is important to detect IVN anomalies for complete vehicular security. However, current studies are constrained by either requiring labeled data or failing to accurately detect message-level anomalies without labeled data. In addition, the concept drift of existing methods has become a challenge over time. To address these problems, this paper proposes an IVN anomaly detection method based on Self-supervised Learning (IVNSL), which is capable of detecting message-level anomalies without labels. The essential idea of IVNSL is to make the message prediction model learn the distribution of normal messages in sequences using message sequences with noise. Furthermore, to accurately detect anomalies, a Message Prediction Model based on Hierarchical transformers (MPMHit) is proposed, which captures the spatial features of the message and the dependencies between messages. Meanwhile, to solve the concept drift over time, this paper proposes an online update mechanism for MPMHit based on vehicle-cloud collaboration. We conduct an extensive experimental evaluation on the car hacking dataset, resulting to an F1-score average and average false positive rates of IVNSL being 2.282% higher and 1.595% lower than the best baseline method. The average detection speed of each message is as fast as 0.1075 ms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
慕青应助研友_闾丘枫采纳,获得10
6秒前
聪慧易文完成签到,获得积分20
6秒前
xzy998应助愉快的楷瑞采纳,获得10
8秒前
实验耗材发布了新的文献求助10
11秒前
忆仙姿完成签到,获得积分10
12秒前
冰魂应助萨摩耶采纳,获得10
13秒前
14秒前
14秒前
16秒前
16秒前
英姑应助成太采纳,获得10
16秒前
kmzzy发布了新的文献求助10
17秒前
YH完成签到,获得积分10
19秒前
19秒前
林莹发布了新的文献求助10
19秒前
柠檬精翠翠完成签到 ,获得积分10
21秒前
小丸子发布了新的文献求助10
21秒前
胡子完成签到,获得积分10
22秒前
23秒前
小马甲应助实验耗材采纳,获得10
25秒前
刻苦的小虾米完成签到 ,获得积分10
25秒前
kmzzy完成签到,获得积分10
26秒前
27秒前
成太发布了新的文献求助10
31秒前
39秒前
小丸子完成签到,获得积分10
40秒前
科研通AI5应助sparkle采纳,获得10
47秒前
zhuminghui完成签到,获得积分10
51秒前
56秒前
58秒前
林莹发布了新的文献求助30
58秒前
1分钟前
dududu发布了新的文献求助10
1分钟前
keock发布了新的文献求助10
1分钟前
1分钟前
1分钟前
sparkle发布了新的文献求助10
1分钟前
英俊的铭应助CHB只争朝夕采纳,获得10
1分钟前
wss123456发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217326
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668059
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385