Multivariate time series anomaly detection via separation, decomposition, and dual transformer-based autoencoder

多元统计 异常检测 自编码 残余物 熵(时间箭头) 计算机科学 数据挖掘 人工智能 模式识别(心理学) 算法 机器学习 物理 深度学习 量子力学
作者
Shiyuan Fu,Xin Gao,Baofeng Li,Feng Zhai,Jiansheng Lu,Bing Xue,Jiahao Yu,Chun Xiao
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:159: 111671-111671 被引量:9
标识
DOI:10.1016/j.asoc.2024.111671
摘要

Multivariate time series usually have entangled temporal patterns and various anomaly types. Meanwhile, they often contain both continuous and discrete features. Many existing methods directly model correlations in complex multivariate time series to conduct anomaly detection. Decomposing time series into different components, such as the overall trend and fluctuations, can contribute to better extracting semantic information and detecting anomalies. Existing decomposition-based anomaly detection methods still have several limitations. First, they directly decompose all features without considering that discrete features are unsuitable for decomposition because they do not have trends or fluctuations. Second, they adopt the same networks for different components with different characteristics, limiting their ability to extract semantic information. Moreover, due to the nature of Transformers, existing reconstruction-based methods using Transformers rarely form information bottlenecks, reducing the differentiation between the reconstruction errors of normal data and anomalies. This paper proposes a multivariate time series anomaly detection method with separation, decomposition, and dual Transformer-based autoencoder (SDDformer). Different from existing methods, SDDformer separates continuous and discrete features and only decomposes continuous features into trend and residual components. Considering the different characteristics of different components, SDDformer adopts Crossformer and the vanilla Transformer as the backbone of two different autoencoders to reconstruct the trend and residual components. Information bottlenecks are better formed using an extra token as the latent variable between the encoder and the decoder. SDDformer regards reconstructing a discrete feature as a classification task and calculates Cross-Entropy as its reconstruction error. Three different metrics are adopted in this paper to compare SDDformer with a variety of typical anomaly detection methods on public data sets, and the experimental results prove that SDDformer can achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
温婉的夜山完成签到,获得积分10
1秒前
小旭不会飞完成签到,获得积分10
2秒前
2秒前
阿伟发布了新的文献求助10
4秒前
BareBear应助军军问问张采纳,获得10
5秒前
小马甲应助军军问问张采纳,获得10
5秒前
lilian发布了新的文献求助10
6秒前
在水一方应助ZhaoW采纳,获得10
6秒前
forest完成签到,获得积分10
6秒前
Bob完成签到,获得积分10
6秒前
rose完成签到,获得积分10
6秒前
8秒前
今后应助辛勤难敌采纳,获得10
9秒前
wwww完成签到 ,获得积分10
9秒前
10秒前
TGGXS完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
文献求助完成签到,获得积分10
12秒前
jj完成签到,获得积分10
12秒前
彭于晏应助小乐采纳,获得10
13秒前
13秒前
xia完成签到,获得积分10
14秒前
幸福的泡芙完成签到,获得积分10
15秒前
尼亚吉拉完成签到,获得积分10
16秒前
lilian完成签到,获得积分10
18秒前
董晏殊完成签到 ,获得积分10
18秒前
ly完成签到 ,获得积分10
18秒前
点滴电镀完成签到,获得积分10
19秒前
ding应助野性的凌瑶采纳,获得10
23秒前
Akim应助李牧采纳,获得10
24秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
lindaiyu完成签到,获得积分10
27秒前
虚心青梦发布了新的文献求助10
28秒前
万能图书馆应助liu采纳,获得10
29秒前
29秒前
31秒前
WGX完成签到 ,获得积分10
31秒前
beizi完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478271
求助须知:如何正确求助?哪些是违规求助? 4579994
关于积分的说明 14371755
捐赠科研通 4508300
什么是DOI,文献DOI怎么找? 2470593
邀请新用户注册赠送积分活动 1457382
关于科研通互助平台的介绍 1431307