Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model): a modelling study

子痫 医学 接收机工作特性 逻辑回归 随机森林 风险评估 机器学习 产科 怀孕 计算机科学 内科学 遗传学 生物 计算机安全
作者
Tünde Montgomery-Csobán,Kimberley Kavanagh,Paul Murray,Chris Robertson,Sarah Barry,Ugochinyere Vivian Ukah,Beth Payne,K. H. Nicolaides,Argyro Syngelaki,Olivia Ionescu,Ranjit Akolekar,Jennifer A. Hutcheon,Laura A. Magee,Peter von Dadelszen,Mark Brown,Gregory K. Davis,Claire E. Parker,Barry N J Walters,Nelson Sass,J. Mark Ansermino,Vivien Cao,Geoffrey W. Cundiff,Emma C.M. von Dadelszen,M. Joanne Douglas,Guy A. Dumont,Dustin Dunsmuir,Jennifer A. Hutcheon,K.S. Joseph,Sayrin Lalji,Tang Lee,Jing Li,Kenneth Lim,Sarka Lisonkova,P Lott,Jennifer Menzies,Alexandra L. Millman,Lynne Palmer,Beth Payne,Ziguang Qu,James A. Russell,Diane Sawchuck,Dorothy Shaw,D. Keith Still,Ugochinyere Vivian Ukah,Brenda Wagner,Keith R. Walley,D Hugo,The late Andrée Gruslin,George Tawagi,Graeme N. Smith,Anne‐Marie Côté,Jean‐Marie Moutquin,Annie Ouellet,Shoo K. Lee,Tao Duan,Jian Zhou,The late Farizah Haniff,Swati Mahajan,Amanda Noovao,Hanna Karjalainend,Alja Kortelainen,Hannele Laivuori,J. Wessel Ganzevoort,Henk Groen,P Kyle,Michael C. Moore,Barbra Pullar,Zulfiqar A Bhutta,Rahat Qureshi,Rozina Sikandar,The late Shereen Z. Bhutta,Garth Cloete,David Hall,The late Erika van Papendorp,D.W. Steyn,Christine Biryabarema,Florence Mirembe,Annettee Nakimuli,John Allotey,Shakila Thangaratinam,K. H. Nicolaides,Olivia Ionescu,Argyro Syngelaki,Michael de Swiet,Laura A. Magee,Peter von Dadelszen,Ranjit Akolekar,James J. Walker,Stephen C. Robson,Fiona Broughton-Pipkin,Pamela Loughna,Manu Vatish,Christopher W.G. Redman,Sarah Barry,Kimberley Kavanagh,Tunde Montgomery-Csobán,Paul Murray,Chris Robertson,Eleni Tsigas,Douglas Woelkers,Marshall D. Lindheimer,Michael W. Varner,Baha M. Sibai,Mario Merialdi,Mariana Widmer
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:6 (4): e238-e250 被引量:1
标识
DOI:10.1016/s2589-7500(23)00267-4
摘要

BackgroundAffecting 2–4% of pregnancies, pre-eclampsia is a leading cause of maternal death and morbidity worldwide. Using routinely available data, we aimed to develop and validate a novel machine learning-based and clinical setting-responsive time-of-disease model to rule out and rule in adverse maternal outcomes in women presenting with pre-eclampsia.MethodsWe used health system, demographic, and clinical data from the day of first assessment with pre-eclampsia to predict a Delphi-derived composite outcome of maternal mortality or severe morbidity within 2 days. Machine learning methods, multiple imputation, and ten-fold cross-validation were used to fit models on a development dataset (75% of combined published data of 8843 patients from 11 low-income, middle-income, and high-income countries). Validation was undertaken on the unseen 25%, and an additional external validation was performed in 2901 inpatient women admitted with pre-eclampsia to two hospitals in south-east England. Predictive risk accuracy was determined by area-under-the-receiver-operator characteristic (AUROC), and risk categories were data-driven and defined by negative (–LR) and positive (+LR) likelihood ratios.FindingsOf 8843 participants, 590 (6·7%) developed the composite adverse maternal outcome within 2 days, 813 (9·2%) within 7 days, and 1083 (12·2%) at any time. An 18-variable random forest-based prediction model, PIERS-ML, was accurate (AUROC 0·80 [95% CI 0·76–0·84] vs the currently used logistic regression model, fullPIERS: AUROC 0·68 [0·63–0·74]) and categorised women into very low risk (–LR <0·1; eight [0·7%] of 1103 women), low risk (–LR 0·1 to 0·2; 321 [29·1%] women), moderate risk (–LR >0·2 and +LR <5·0; 676 [61·3%] women), high risk (+LR 5·0 to 10·0, 87 [7·9%] women), and very high risk (+LR >10·0; 11 [1·0%] women). Adverse maternal event rates were 0% for very low risk, 2% for low risk, 5% for moderate risk, 26% for high risk, and 91% for very high risk within 48 h. The 2901 women in the external validation dataset were accurately classified as being at very low risk (0% with outcomes), low risk (1%), moderate risk (4%), high risk (33%), or very high risk (67%).InterpretationThe PIERS-ML model improves identification of women with pre-eclampsia who are at lowest and greatest risk of severe adverse maternal outcomes within 2 days of assessment, and can support provision of accurate guidance to women, their families, and their maternity care providers.FundingUniversity of Strathclyde Diversity in Data Linkage Centre for Doctoral Training, the Fetal Medicine Foundation, The Canadian Institutes of Health Research, and the Bill & Melinda Gates Foundation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yuke完成签到,获得积分10
1秒前
王雅欣发布了新的文献求助10
2秒前
谦让的牛排完成签到 ,获得积分10
3秒前
4秒前
yuke发布了新的文献求助30
4秒前
小冯发布了新的文献求助10
5秒前
北北贝贝发布了新的文献求助200
7秒前
雪白的冥幽完成签到 ,获得积分10
7秒前
邱邱发布了新的文献求助10
9秒前
夏小川完成签到,获得积分10
12秒前
深情安青应助小冯采纳,获得10
12秒前
科研人员发布了新的文献求助60
15秒前
渴望成为大白的小白完成签到 ,获得积分10
17秒前
米粥饭完成签到,获得积分10
18秒前
19秒前
青山落日秋月春风完成签到,获得积分10
21秒前
任性茉莉完成签到,获得积分10
25秒前
阿尔卑斯完成签到,获得积分10
26秒前
嘻嘻完成签到,获得积分10
29秒前
烟袋斜了街完成签到,获得积分20
30秒前
且放青山远完成签到,获得积分10
31秒前
lzt完成签到 ,获得积分10
33秒前
科研通AI2S应助阿莫西西林采纳,获得10
34秒前
笑点低的寻冬关注了科研通微信公众号
35秒前
噗噗完成签到,获得积分10
35秒前
36秒前
lj发布了新的文献求助10
38秒前
38秒前
ddli发布了新的文献求助10
40秒前
上官若男应助烟袋斜了街采纳,获得10
41秒前
虚幻芷文完成签到,获得积分10
42秒前
科研通AI2S应助guzhengyuan采纳,获得10
42秒前
43秒前
43秒前
喜之郎完成签到,获得积分10
43秒前
galaxy发布了新的文献求助10
45秒前
乐乐应助nicheng采纳,获得10
46秒前
lj完成签到,获得积分10
47秒前
qiulong发布了新的文献求助10
49秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799181
求助须知:如何正确求助?哪些是违规求助? 3344881
关于积分的说明 10322160
捐赠科研通 3061343
什么是DOI,文献DOI怎么找? 1680214
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763451