放松(心理学)
几何学
国家(计算机科学)
状态空间
能量最小化
趋同(经济学)
量子
操作员(生物学)
空格(标点符号)
集合(抽象数据类型)
分子几何学
数学
统计物理学
物理
化学
算法
分子
计算化学
计算机科学
量子力学
统计
基因
操作系统
转录因子
社会心理学
抑制因子
经济
生物化学
经济增长
程序设计语言
心理学
作者
S. Heinen,Guido Falk von Rudorff,O. Anatole von Lilienfeld
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:1
标识
DOI:10.48550/arxiv.2205.02623
摘要
We use energies and forces predicted within response operator based quantum machine learning (OQML) to perform geometry optimization and transition state search calculations with legacy optimizers. For randomly sampled initial coordinates of small organic query molecules we report systematic improvement of equilibrium and transition state geometry output as training set sizes increase. Out-of-sample S$_\mathrm{N}$2 reactant complexes and transition state geometries have been predicted using the LBFGS and the QST2 algorithm with an RMSD of 0.16 and 0.4 \r{A} -- after training on up to 200 reactant complexes relaxations and transition state search trajectories from the QMrxn20 data-set, respectively. For geometry optimizations, we have also considered relaxation paths up to 5'500 constitutional isomers with sum formula C$_7$H$_{10}$O$_2$ from the QM9-database. Using the resulting OQML models with an LBFGS optimizer reproduces the minimum geometry with an RMSD of 0.14~\r{A}. For converged equilibrium and transition state geometries subsequent vibrational normal mode frequency analysis indicates deviation from MP2 reference results by on average 14 and 26\,cm$^{-1}$, respectively. While the numerical cost for OQML predictions is negligible in comparison to DFT or MP2, the number of steps until convergence is typically larger in either case. The success rate for reaching convergence, however, improves systematically with training set size, underscoring OQML's potential for universal applicability.
科研通智能强力驱动
Strongly Powered by AbleSci AI