Multi-Modal Learning for Predicting the Genotype of Glioma

计算机科学 深度学习 卷积神经网络 人工智能 自编码 图形 模式识别(心理学) 机器学习 理论计算机科学
作者
Yiran Wei,Xi Chen,Lei Zhu,Lipei Zhang,Carola‐Bibiane Schönlieb,Stephen J. Price,Chao Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (11): 3167-3178 被引量:20
标识
DOI:10.1109/tmi.2023.3244038
摘要

The isocitrate dehydrogenase (IDH) gene mutation is an essential biomarker for the diagnosis and prognosis of glioma. It is promising to better predict glioma genotype by integrating focal tumor image and geometric features with brain network features derived from MRI. Convolutional neural networks show reasonable performance in predicting IDH mutation, which, however, cannot learn from non-Euclidean data, e.g., geometric and network data. In this study, we propose a multi-modal learning framework using three separate encoders to extract features of focal tumor image, tumor geometrics and global brain networks. To mitigate the limited availability of diffusion MRI, we develop a self-supervised approach to generate brain networks from anatomical multi-sequence MRI. Moreover, to extract tumor-related features from the brain network, we design a hierarchical attention module for the brain network encoder. Further, we design a bi-level multi-modal contrastive loss to align the multi-modal features and tackle the domain gap at the focal tumor and global brain. Finally, we propose a weighted population graph to integrate the multi-modal features for genotype prediction. Experimental results on the testing set show that the proposed model outperforms the baseline deep learning models. The ablation experiments validate the performance of different components of the framework. The visualized interpretation corresponds to clinical knowledge with further validation. In conclusion, the proposed learning framework provides a novel approach for predicting the genotype of glioma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背带裤打篮球完成签到,获得积分0
刚刚
刚刚
隐形曼青应助Assure采纳,获得10
刚刚
1秒前
3秒前
Zzkai发布了新的文献求助10
3秒前
4秒前
涵泽发布了新的文献求助10
4秒前
4秒前
dlut0407完成签到,获得积分10
6秒前
大泥鳅发布了新的文献求助10
8秒前
贝林7完成签到,获得积分10
9秒前
9秒前
小镇的废物完成签到,获得积分10
12秒前
13秒前
14秒前
rong发布了新的文献求助10
14秒前
彭于晏应助eiyuemiya采纳,获得10
16秒前
可爱的函函应助Pull采纳,获得10
16秒前
东风完成签到,获得积分10
17秒前
超帅曼柔完成签到,获得积分10
17秒前
Assure发布了新的文献求助10
18秒前
Starry发布了新的文献求助10
19秒前
田様应助大泥鳅采纳,获得10
19秒前
仁者无敌完成签到,获得积分10
22秒前
xucc完成签到,获得积分10
25秒前
852应助月亮弯弯啊采纳,获得10
25秒前
Hello应助热心板凳采纳,获得10
27秒前
28秒前
zc完成签到,获得积分10
28秒前
Assure完成签到,获得积分10
29秒前
zyp3344完成签到,获得积分10
33秒前
36秒前
杨权发布了新的文献求助10
37秒前
37秒前
zyp3344发布了新的文献求助10
39秒前
Jenny完成签到,获得积分20
40秒前
43秒前
cocoa345完成签到,获得积分10
43秒前
葡萄炖雪梨完成签到,获得积分10
43秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799173
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321997
捐赠科研通 3061303
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445