Peptide-binding specificity prediction using fine-tuned protein structure prediction networks

序列(生物学) 计算生物学 计算机科学 分类器(UML) 人工智能 PDZ域 蛋白质结构预测 机器学习 蛋白质结构 数据挖掘 生物 遗传学 生物化学
作者
Amir Motmaen,Justas Dauparas,Minkyung Baek,Mohamad H. Abedi,David Baker,Philip Bradley
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:120 (9) 被引量:40
标识
DOI:10.1073/pnas.2216697120
摘要

Peptide-binding proteins play key roles in biology, and predicting their binding specificity is a long-standing challenge. While considerable protein structural information is available, the most successful current methods use sequence information alone, in part because it has been a challenge to model the subtle structural changes accompanying sequence substitutions. Protein structure prediction networks such as AlphaFold model sequence-structure relationships very accurately, and we reasoned that if it were possible to specifically train such networks on binding data, more generalizable models could be created. We show that placing a classifier on top of the AlphaFold network and fine-tuning the combined network parameters for both classification and structure prediction accuracy leads to a model with strong generalizable performance on a wide range of Class I and Class II peptide-MHC interactions that approaches the overall performance of the state-of-the-art NetMHCpan sequence-based method. The peptide-MHC optimized model shows excellent performance in distinguishing binding and non-binding peptides to SH3 and PDZ domains. This ability to generalize well beyond the training set far exceeds that of sequence-only models and should be particularly powerful for systems where less experimental data are available.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dcx完成签到,获得积分10
1秒前
充电宝应助孤独的青文采纳,获得10
1秒前
冷静点格子完成签到,获得积分10
1秒前
torch132完成签到,获得积分0
1秒前
害羞秋莲完成签到,获得积分10
1秒前
2秒前
哈密瓜牛奶完成签到,获得积分10
2秒前
科研通AI6应助Wang采纳,获得10
2秒前
wanz完成签到,获得积分20
3秒前
科研通AI6应助霸王龙采纳,获得10
3秒前
3秒前
lu发布了新的文献求助10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
小男孩完成签到,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
小金鱼完成签到,获得积分10
4秒前
cyyan应助Carly采纳,获得20
4秒前
sevenhill应助科研通管家采纳,获得10
4秒前
乂领域发布了新的文献求助10
4秒前
Harry应助科研通管家采纳,获得10
4秒前
Ava应助荔枝多酚采纳,获得10
4秒前
壮观的冬云完成签到,获得积分10
4秒前
4秒前
4秒前
李健应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
sevenhill应助科研通管家采纳,获得10
4秒前
冬瓜的阳光海岸完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
sevenhill应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
sevenhill应助科研通管家采纳,获得10
5秒前
5秒前
sui完成签到,获得积分20
5秒前
阔达的沛儿完成签到,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5544404
求助须知:如何正确求助?哪些是违规求助? 4630156
关于积分的说明 14615154
捐赠科研通 4571805
什么是DOI,文献DOI怎么找? 2506518
邀请新用户注册赠送积分活动 1483536
关于科研通互助平台的介绍 1455094