A Machine Learning Approach to Developing an Accurate Prediction of Maximal Heart Rate During Exercise Testing in Apparently Healthy Adults

均方误差 Lasso(编程语言) 数学 统计 皮尔逊积矩相关系数 随机森林 医学 心率 支持向量机 人工智能 机器学习 血压 计算机科学 内科学 万维网
作者
Larsen Cundrič,Zoran Bosnić,Leonard A. Kaminsky,Jonathan Myers,James E. Peterman,Vidan Marković,Ross Arena,Dejana Popović
出处
期刊:Journal of Cardiopulmonary Rehabilitation and Prevention [Lippincott Williams & Wilkins]
卷期号:43 (5): 377-383
标识
DOI:10.1097/hcr.0000000000000786
摘要

Maximal heart rate (HR max ) continues to be an important measure of adequate effort during an exercise test. The aim of this study was to improve the accuracy of HR max prediction using a machine learning (ML) approach.We used a sample from the Fitness Registry of the Importance of Exercise National Database, which included 17 325 apparently healthy individuals (81% males) who performed a maximal cardiopulmonary exercise test. Two standard formulas for HR max prediction were tested: Formula1 = 220 - age (yr), root-mean-squared error (RMSE) 21.9, relative root-mean-squared error (RRMSE) 1.1; and Formula2 = 209.3 - 0.72 × age (yr), RMSE 22.7 and RRMSE 1.1. For ML model prediction, we used age, weight, height, resting HR, and systolic and diastolic blood pressure. The following ML algorithms to predict HR max were applied: lasso regression (LR), neural networks (NN), support vector machine (SVM) and random forests (RF). An evaluation was performed using cross-validation and by computing the RMSE and RRMSE, Pearson correlation, and Bland-Altman plots. The best predictive model was explained with Shapley Additive Explanations (SHAP).The HR max for the cohort was 162 ± 20 bpm. All ML models improved HR max prediction and reduced RMSE and RRMSE compared with Formula1 (LR: 20.2%, NN: 20.4%, SVM: 22.2%, and RF: 24.7%). The predictions of all algorithms significantly correlated with HR max ( r = 0.49, 0.51, 0.54, 0.57, respectively; P < .001). Bland-Altman analysis demonstrated lower bias and 95% CI for all ML models in comparison with standard equations. The SHAP explanation showed a high impact of all selected variables.Machine learning, particularly the RF model, improved prediction of HR max using readily available measures. This approach should be considered for clinical application to refine HR max prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
白樱恋曲发布了新的文献求助10
2秒前
科研通AI5应助魔幻马里奥采纳,获得10
2秒前
2秒前
4秒前
CodeCraft应助疯狂女博士采纳,获得10
4秒前
顺顺发布了新的文献求助100
5秒前
帅气的八宝粥完成签到,获得积分10
5秒前
6秒前
丹曦完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
QH完成签到 ,获得积分10
8秒前
慕青应助海意采纳,获得10
8秒前
8秒前
北落发布了新的文献求助10
9秒前
菜菜发布了新的文献求助10
9秒前
JamesPei应助额我认为采纳,获得30
11秒前
Victor完成签到,获得积分10
11秒前
慕青应助顺顺采纳,获得10
11秒前
思源应助一把过采纳,获得10
11秒前
EMC打工人发布了新的文献求助10
13秒前
小二郎应助缥缈斓采纳,获得10
13秒前
李健的小迷弟应助缥缈斓采纳,获得10
13秒前
ZZY发布了新的文献求助10
13秒前
Lu完成签到,获得积分10
14秒前
Li完成签到,获得积分10
14秒前
14秒前
十个勤天完成签到,获得积分10
17秒前
yyc666完成签到,获得积分10
18秒前
18秒前
18秒前
言三斤发布了新的文献求助20
18秒前
共享精神应助白樱恋曲采纳,获得10
18秒前
俏皮的觅翠完成签到,获得积分20
19秒前
19秒前
23应助连欢采纳,获得30
20秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4101859
求助须知:如何正确求助?哪些是违规求助? 3639421
关于积分的说明 11533152
捐赠科研通 3348063
什么是DOI,文献DOI怎么找? 1840041
邀请新用户注册赠送积分活动 907100
科研通“疑难数据库(出版商)”最低求助积分说明 824313