ChatGPT for good? On opportunities and challenges of large language models for education

课程 计算机科学 领域(数学) 工程伦理学 知识管理 管理科学 心理学 教育学 工程类 数学 纯数学
作者
Enkelejda Kasneci,Kathrin Seßler,Stefan Küchemann,Maria Bannert,Daryna Dementieva,Frank Fischer,Urs Gasser,Georg Groh,Stephan Günnemann,Eyke Hüllermeier,Stephan Krusche,Gitta Kutyniok,Tilman Michaeli,Claudia Nerdel,Jürgen Pfeffer,Oleksandra Poquet,Michael Sailer,Albrecht Schmidt,Tina Seidel,Matthias Stadler
出处
期刊:Learning and Individual Differences [Elsevier BV]
卷期号:103: 102274-102274 被引量:2932
标识
DOI:10.1016/j.lindif.2023.102274
摘要

Large language models represent a significant advancement in the field of AI. The underlying technology is key to further innovations and, despite critical views and even bans within communities and regions, large language models are here to stay. This commentary presents the potential benefits and challenges of educational applications of large language models, from student and teacher perspectives. We briefly discuss the current state of large language models and their applications. We then highlight how these models can be used to create educational content, improve student engagement and interaction, and personalize learning experiences. With regard to challenges, we argue that large language models in education require teachers and learners to develop sets of competencies and literacies necessary to both understand the technology as well as their limitations and unexpected brittleness of such systems. In addition, a clear strategy within educational systems and a clear pedagogical approach with a strong focus on critical thinking and strategies for fact checking are required to integrate and take full advantage of large language models in learning settings and teaching curricula. Other challenges such as the potential bias in the output, the need for continuous human oversight, and the potential for misuse are not unique to the application of AI in education. But we believe that, if handled sensibly, these challenges can offer insights and opportunities in education scenarios to acquaint students early on with potential societal biases, criticalities, and risks of AI applications. We conclude with recommendations for how to address these challenges and ensure that such models are used in a responsible and ethical manner in education.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南风知我意完成签到,获得积分10
刚刚
Lemenchichi完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
5秒前
gwbk完成签到,获得积分10
5秒前
guyuangyy完成签到,获得积分10
5秒前
涨知识完成签到 ,获得积分10
7秒前
8秒前
JESI完成签到,获得积分10
9秒前
lulu完成签到 ,获得积分10
11秒前
趙途嘵生完成签到,获得积分10
15秒前
乐人完成签到 ,获得积分10
15秒前
16秒前
houbinghua完成签到,获得积分10
18秒前
lzq完成签到 ,获得积分10
19秒前
jesi完成签到,获得积分10
21秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
雪雪完成签到 ,获得积分10
25秒前
lailight发布了新的文献求助10
26秒前
优雅莞完成签到,获得积分10
27秒前
江边鸟完成签到 ,获得积分10
27秒前
30秒前
CWC完成签到,获得积分10
32秒前
33秒前
老高发布了新的文献求助10
37秒前
lailight完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
39秒前
可爱的函函应助Cyris采纳,获得10
41秒前
Cold-Drink-Shop完成签到,获得积分10
43秒前
搜集达人应助邵小庆采纳,获得10
52秒前
含光完成签到,获得积分10
53秒前
灯座发布了新的文献求助10
56秒前
顺利问玉完成签到 ,获得积分10
57秒前
量子星尘发布了新的文献求助10
59秒前
凌风苇岸完成签到 ,获得积分10
59秒前
1分钟前
搬砖的化学男完成签到 ,获得积分10
1分钟前
jia完成签到 ,获得积分10
1分钟前
1分钟前
子木李完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613143
求助须知:如何正确求助?哪些是违规求助? 4018085
关于积分的说明 12437049
捐赠科研通 3700437
什么是DOI,文献DOI怎么找? 2040760
邀请新用户注册赠送积分活动 1073539
科研通“疑难数据库(出版商)”最低求助积分说明 957193