LFCKT: A Learning and Forgetting Convolutional Knowledge Tracking Model

遗忘 计算机科学 跟踪(教育) 过程(计算) 人工智能 知识建模 领域知识 认知心理学 心理学 教育学 操作系统
作者
Mengjuan Li,Lei Niu,Jinhua Zhao,Yuchen Wang
标识
DOI:10.1109/ieir56323.2022.10050085
摘要

Personalized exercise recommendation is a key research direction of personalized learning. In personalized exercise recommendation, we recommend suitable exercises for students according to their knowledge mastery status to improve their learning efficiency. Therefore, the accuracy of predicting students’ knowledge state in personalized exercise recommendation affects the goodness of the exercise recommendation. In the process of students’ learning, learning behavior and forgetting behavior are intertwined, and students’ forgetting behavior has a great influence on the knowledge state. In order to accurately model students’ learning and forgetting, we propose a Learning and Forgetting Convolutional Knowledge Tracking model (LFCKT) that takes into account both learning and forgetting behaviors. The model takes into account three factors that affect knowledge forgetting, including the interval time of target knowledge interaction, the count of past target knowledge interaction and student’s state of knowledge. LFCKT model uses students’ answer results as indirect feedback of knowledge mastery in the process of knowledge tracking, and integrates individual personalized learning behavior and individual forgetting behavior. Through experiments on the real online education public dataset, LFCKT can better track students’ knowledge mastery status and has better predictive performance than current knowledge tracking models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZIS完成签到,获得积分10
4秒前
HEAUBOOK应助7123采纳,获得10
6秒前
CodeCraft应助小超人采纳,获得10
6秒前
7秒前
科研通AI5应助123采纳,获得10
9秒前
lyy完成签到,获得积分10
10秒前
idiom完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
罗中翠发布了新的文献求助10
14秒前
探寻发布了新的文献求助10
16秒前
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
无花果应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
sunn完成签到,获得积分10
20秒前
lh完成签到,获得积分10
20秒前
T拐拐发布了新的文献求助10
21秒前
21秒前
21秒前
7123完成签到,获得积分10
24秒前
卡洛完成签到,获得积分10
26秒前
领导范儿应助dinghaifeng采纳,获得10
27秒前
27秒前
27秒前
领导范儿应助大知闲闲采纳,获得10
27秒前
luwei0618发布了新的文献求助10
31秒前
123完成签到,获得积分10
31秒前
31秒前
32秒前
34秒前
123发布了新的文献求助10
34秒前
星辰大海应助微眠采纳,获得10
34秒前
35秒前
科研通AI5应助In采纳,获得10
35秒前
鱼书发布了新的文献求助10
38秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814404
求助须知:如何正确求助?哪些是违规求助? 3358503
关于积分的说明 10395700
捐赠科研通 3075750
什么是DOI,文献DOI怎么找? 1689542
邀请新用户注册赠送积分活动 812995
科研通“疑难数据库(出版商)”最低求助积分说明 767428