Deep neural networks generalization and fine-tuning for 12-lead ECG classification

计算机科学 人工智能 人工神经网络 预处理器 机器学习 深度学习 一般化 元数据 质量(理念) 数据预处理 深层神经网络 数据挖掘 操作系统 哲学 数学分析 认识论 数学
作者
A. Avetisyan,Shahane Tigranyan,Ariana Asatryan,Olga Mashkova,Sergey Skorik,Vladislav Ananev,Yury Markin
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:93: 106160-106160 被引量:5
标识
DOI:10.1016/j.bspc.2024.106160
摘要

Numerous studies focus on diagnosing heart diseases using deep learning methods applied to 12-lead electrocardiographic (ECG) records. However, these studies often face limitations due to reliance on specific datasets, which vary in size and parameters such as patient metadata, the number of doctors annotating ECGs, types of devices used for ECG recording, data preprocessing techniques, etc. It is well-known that high-quality deep neural networks trained on one ECG dataset may not necessarily perform well on other datasets or in different clinical settings. In this paper, we propose a methodology designed to enhance the quality of heart disease prediction regardless of the dataset. We achieve this by first training neural networks on a variety of labeled datasets, then fine-tuning for specific datasets, significantly improving prediction accuracy. We demonstrate its applicability by training various neural networks on a large private dataset TIS, which contains a wide range of ECG records from multiple hospitals, and on a relatively smaller public dataset, PTB-XL. Our results show that networks trained on a large dataset improves classification performance. Furthermore, these networks fine-tuned on PTB-XL outperform those trained exclusively on smaller datasets. Additionally, we made the weights of our pre-trained models publicly available, enabling researchers and clinicians to adapt these models to their specific datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
甜甜玫瑰应助怡然白竹采纳,获得10
刚刚
啦啦啦啦完成签到,获得积分10
刚刚
晨雾锁阳发布了新的文献求助10
刚刚
zjy发布了新的文献求助10
刚刚
Wyoou完成签到,获得积分10
刚刚
1秒前
2秒前
wanwei完成签到,获得积分10
3秒前
birdy发布了新的文献求助20
3秒前
宋朋锟完成签到,获得积分10
4秒前
飞翔的帅猪完成签到,获得积分10
5秒前
orixero应助zzz采纳,获得10
5秒前
甜甜玫瑰应助小布丁采纳,获得10
6秒前
6秒前
6秒前
6秒前
晚晚完成签到,获得积分20
7秒前
7秒前
andrele应助瘦瘦慕凝采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
曾经的靖发布了新的文献求助10
8秒前
9秒前
kingwill应助主公过于清纯采纳,获得60
9秒前
Druid发布了新的文献求助10
10秒前
诚心中恶发布了新的文献求助10
11秒前
11秒前
吐司万岁发布了新的文献求助10
11秒前
战魂完成签到,获得积分10
11秒前
11秒前
12秒前
羊青丝发布了新的文献求助10
12秒前
nozero应助嘻嘻嘻采纳,获得200
12秒前
莫问今生完成签到,获得积分10
12秒前
liu发布了新的文献求助10
13秒前
ddssa1988发布了新的文献求助10
13秒前
小蘑菇应助xxkiyo采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793765
求助须知:如何正确求助?哪些是违规求助? 3338643
关于积分的说明 10290816
捐赠科研通 3055026
什么是DOI,文献DOI怎么找? 1676315
邀请新用户注册赠送积分活动 804358
科研通“疑难数据库(出版商)”最低求助积分说明 761836