Artificial intelligence-enhanced electrocardiogram analysis for identifying cardiac autonomic neuropathy in patients with diabetes

F1得分 精确性和召回率 召回 医学 诊断准确性 糖尿病 支持向量机 内科学 接收机工作特性 人工智能 曲线下面积 心电图 机器学习 心脏病学 计算机科学 心理学 认知心理学 内分泌学
作者
Krzysztof Irlik,Hanadi Aldosari,Mirela Hendel,Hanna Kwiendacz,Julia Piaśnik,Justyna Kulpa,Paweł Ignacy,Sylwia Boczek,Mikołaj Herba,Kamil Kegler,Frans Coenen,Janusz Gumprecht,Yalin Zheng,Gregory Y.H. Lip,Uazman Alam,Katarzyna Nabrdalik
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3735738/v1
摘要

Abstract Background Cardiac autonomic neuropathy (CAN) is an important yet often overlooked complication of diabetes, which significantly increases the risk of cardiovascular (CV) events and mortality. Traditional diagnostic methods like CV autonomic function tests (CARTs) are laborious and rarely evaluated in clinical practice. This study aimed to develop and employ machine learning (ML) algorithms to analyze electrocardiogram (ECG) for the diagnosis of CAN. Methods We utilized motif and discord extraction techniques alongside Long Short-Term Memory (LSTM) networks to analyze 12-lead, 10 seconds ECG tracings to detect CAN in patients with diabetes. The performance of these methods with the Support Vector Machine (SVM) classification model was evaluated using Ten-Cross Validation (TCV) with the following metrics accuracy, precision, recall, F1 score, and area under the ROC Curve (AUC). Results Among 205 patients (mean age 54 ± 17; 54% female), 100 were diagnosed with CAN, including 38 with definite or severe CAN (dsCAN) and 62 with early CAN (eCAN). The best model performance for dsCAN classification was achieved using both motifs and discords, with an accuracy of 0.92, an F1 score of 0.92, a recall at 0.94, a precision of 0.91, and an excellent AUC of 0.93 (95%CI 0.91-0.94). For the detection of any stage of CAN, the approach combining motifs and discords yielded best results with an accuracy of 0.65, F1 score of 0.68, a recall of 0.75, a precision of 0.68, and an AUC of 0.68 (95%CI 0.54-0.81). Conclusion Our study highlights the potential of using ML techniques, particularly motifs and discords, to effectively detect dsCAN in patients with diabetes. This approach could be applied in large-scale screening of CAN, particularly to identify definite/severe CAN where CV risk factor modification may be initiated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
风趣夜云发布了新的文献求助10
刚刚
vvvvv发布了新的文献求助10
刚刚
xiaolei完成签到 ,获得积分10
1秒前
1秒前
2秒前
Moo5_zzZ发布了新的文献求助30
3秒前
虚幻的书萱完成签到 ,获得积分10
3秒前
包靡靡发布了新的文献求助10
4秒前
科目三应助mark采纳,获得10
4秒前
隐形曼青应助寒冷的沛珊采纳,获得10
4秒前
周亚男发布了新的文献求助10
5秒前
赘婿应助姜姜采纳,获得10
5秒前
芋头发布了新的文献求助50
6秒前
SciGPT应助kangkang采纳,获得30
6秒前
41完成签到,获得积分10
7秒前
虚幻的书萱关注了科研通微信公众号
8秒前
贰鸟应助柳易槐采纳,获得20
8秒前
9秒前
10秒前
zyq完成签到 ,获得积分10
10秒前
ZhuoCui完成签到,获得积分20
10秒前
活泼的飞扬完成签到,获得积分10
12秒前
善学以致用应助J_L采纳,获得10
13秒前
13秒前
13秒前
爆米花应助DreamMaker采纳,获得10
14秒前
15秒前
领导范儿应助meinvaikeyan采纳,获得10
15秒前
缓慢如南发布了新的文献求助10
15秒前
congjia完成签到,获得积分10
16秒前
积极三毒发布了新的文献求助10
16秒前
17秒前
Ava应助Moo5_zzZ采纳,获得30
17秒前
17秒前
Ethan发布了新的文献求助10
18秒前
19秒前
20秒前
哇撒完成签到,获得积分10
20秒前
CipherSage应助重要白开水采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4727442
求助须知:如何正确求助?哪些是违规求助? 4084047
关于积分的说明 12631452
捐赠科研通 3790710
什么是DOI,文献DOI怎么找? 2093421
邀请新用户注册赠送积分活动 1119233
科研通“疑难数据库(出版商)”最低求助积分说明 995469