亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence-enhanced electrocardiogram analysis for identifying cardiac autonomic neuropathy in patients with diabetes

F1得分 精确性和召回率 召回 医学 诊断准确性 糖尿病 支持向量机 内科学 接收机工作特性 人工智能 曲线下面积 心电图 机器学习 心脏病学 计算机科学 心理学 内分泌学 认知心理学
作者
Krzysztof Irlik,Hanadi Aldosari,Mirela Hendel,Hanna Kwiendacz,Julia Piaśnik,Justyna Kulpa,Paweł Ignacy,Sylwia Boczek,Mikołaj Herba,Kamil Kegler,Frans Coenen,Janusz Gumprecht,Yalin Zheng,Gregory Y.H. Lip,Uazman Alam,Katarzyna Nabrdalik
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3735738/v1
摘要

Abstract Background Cardiac autonomic neuropathy (CAN) is an important yet often overlooked complication of diabetes, which significantly increases the risk of cardiovascular (CV) events and mortality. Traditional diagnostic methods like CV autonomic function tests (CARTs) are laborious and rarely evaluated in clinical practice. This study aimed to develop and employ machine learning (ML) algorithms to analyze electrocardiogram (ECG) for the diagnosis of CAN. Methods We utilized motif and discord extraction techniques alongside Long Short-Term Memory (LSTM) networks to analyze 12-lead, 10 seconds ECG tracings to detect CAN in patients with diabetes. The performance of these methods with the Support Vector Machine (SVM) classification model was evaluated using Ten-Cross Validation (TCV) with the following metrics accuracy, precision, recall, F1 score, and area under the ROC Curve (AUC). Results Among 205 patients (mean age 54 ± 17; 54% female), 100 were diagnosed with CAN, including 38 with definite or severe CAN (dsCAN) and 62 with early CAN (eCAN). The best model performance for dsCAN classification was achieved using both motifs and discords, with an accuracy of 0.92, an F1 score of 0.92, a recall at 0.94, a precision of 0.91, and an excellent AUC of 0.93 (95%CI 0.91-0.94). For the detection of any stage of CAN, the approach combining motifs and discords yielded best results with an accuracy of 0.65, F1 score of 0.68, a recall of 0.75, a precision of 0.68, and an AUC of 0.68 (95%CI 0.54-0.81). Conclusion Our study highlights the potential of using ML techniques, particularly motifs and discords, to effectively detect dsCAN in patients with diabetes. This approach could be applied in large-scale screening of CAN, particularly to identify definite/severe CAN where CV risk factor modification may be initiated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助无心的尔阳采纳,获得10
10秒前
每天我都睡得好完成签到 ,获得积分10
11秒前
23秒前
wangye完成签到 ,获得积分10
23秒前
37秒前
Tina完成签到 ,获得积分10
37秒前
39秒前
41秒前
49秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
老程完成签到,获得积分10
1分钟前
ffff完成签到 ,获得积分10
1分钟前
hjx完成签到 ,获得积分10
1分钟前
xyzdmmm完成签到,获得积分10
1分钟前
1分钟前
shaonianzu完成签到 ,获得积分10
2分钟前
2分钟前
Acid完成签到 ,获得积分10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
3分钟前
3分钟前
乐乐应助无心的尔阳采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
哎健身完成签到 ,获得积分10
3分钟前
kmzzy完成签到,获得积分10
3分钟前
直率的笑翠完成签到 ,获得积分10
3分钟前
3分钟前
yiyixt完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972805
求助须知:如何正确求助?哪些是违规求助? 3517105
关于积分的说明 11186207
捐赠科研通 3252663
什么是DOI,文献DOI怎么找? 1796580
邀请新用户注册赠送积分活动 876487
科研通“疑难数据库(出版商)”最低求助积分说明 805681