A Novel Sparse Image Reconstruction Based on Iteratively Reweighted Least Squares Using Diagonal Regularization

对角线的 正规化(语言学) 迭代加权最小二乘法 人工智能 模式识别(心理学) 数学 计算机科学 算法 非线性最小二乘法 估计理论 几何学
作者
Bamrung Tausiesakul,Krissada Asavaskulkiet
出处
期刊:Journal of Advances in Information Technology [Engineering and Technology Publishing]
卷期号:14 (6): 1365-1371 被引量:1
标识
DOI:10.12720/jait.14.6.1365-1371
摘要

In the information age, numerous data needs to be transferred from one point to another.The bigger the amount of the data, the more the consumption in computation and memory.Due to a limitation of the existing resource, the compression of the data and the reconstruction of the compressed data receive much attention in several research areas.A sparse signal reconstruction problem is considered in this work.The signal can be captured into a vector whose elements can be zeros.Iteratively Reweighted Least Squares (IRLS) is a technique that is designed for extracting the signal vector from the available observation data.In this paper, a new algorithm based on the iteratively reweighted least squares using diagonal regularization method are proposed for sparse image reconstruction.The explicit solution of the IRLS optimization problem is derived and then an alternative IRLS algorithm based on the available solution is proposed.Since the matrix inverse in the iterative computation can be subject to ill condition, a diagonal regularization is proposed to overcome such a problem.Numerical simulation is conducted to illustrate the performance of the new IRLS with the comparison to the former IRLS algorithm.Numerical results indicate that the new IRLS method provides lower signal recovery error than the conventional IRLS approach at the expense of more complexity in terms of more computational time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大角牛发布了新的文献求助10
1秒前
村口的王桂芳完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
丘比特应助风中的觅海采纳,获得10
1秒前
在水一方应助大方寒烟采纳,获得20
2秒前
ling完成签到 ,获得积分10
3秒前
王某某发布了新的文献求助10
3秒前
jackson256发布了新的文献求助10
3秒前
FashionBoy应助花开富贵采纳,获得10
3秒前
dsfsd发布了新的文献求助10
3秒前
Sam完成签到,获得积分10
3秒前
4秒前
BINGBING1230发布了新的文献求助10
4秒前
大强发布了新的文献求助10
4秒前
lp关闭了lp文献求助
4秒前
拼搏的帆布鞋完成签到,获得积分10
4秒前
好好学习发布了新的文献求助10
5秒前
赵云完成签到,获得积分20
5秒前
5秒前
Akim应助调皮初蓝采纳,获得10
6秒前
情怀应助haodian采纳,获得10
6秒前
6秒前
无限子轩完成签到,获得积分10
7秒前
万能图书馆应助庚小马采纳,获得10
7秒前
EXCELSIOR发布了新的文献求助200
7秒前
7秒前
浮游应助明理的帆布鞋采纳,获得10
8秒前
安静的兔子完成签到,获得积分10
8秒前
8秒前
9秒前
清秀豆芽完成签到,获得积分10
9秒前
田様应助BINGBING1230采纳,获得10
9秒前
9秒前
wzy完成签到,获得积分10
9秒前
9秒前
10秒前
小菜鸟发布了新的文献求助10
10秒前
王某某完成签到,获得积分10
10秒前
爆米花应助乐观小土豆采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429451
求助须知:如何正确求助?哪些是违规求助? 4542928
关于积分的说明 14183617
捐赠科研通 4460886
什么是DOI,文献DOI怎么找? 2445912
邀请新用户注册赠送积分活动 1437068
关于科研通互助平台的介绍 1414191