Scope of machine learning in materials research—A review

人工智能 转化式学习 机器学习 计算机科学 财产(哲学) 数据科学 领域(数学) 范围(计算机科学) 心理学 教育学 哲学 数学 认识论 纯数学 程序设计语言
作者
Md Hosne Mobarak,Mariam Akter Mimona,Md. Aminul Islam,Nayem Hossain,Fatema Tuz Zohura,Ibnul Imtiaz,Md Israfil Hossain Rimon
出处
期刊:Applied surface science advances [Elsevier]
卷期号:18: 100523-100523 被引量:140
标识
DOI:10.1016/j.apsadv.2023.100523
摘要

This comprehensive review investigates the multifaceted applications of machine learning in materials research across six key dimensions, redefining the field's boundaries. It explains various knowledge acquisition mechanisms starting with supervised, unsupervised, reinforcement, and deep learning techniques. These techniques are transformative tools for transforming unactionable data into insightful actions. Moving on to the materials synthesis, the review emphasizes the profound influence of machine learning, as demonstrated by predictive models that speed up material selection, structure-property relationships that reveal crucial connections, and data-driven discovery that fosters innovation. Machine learning reshapes our comprehension and manipulation of materials by accelerating discovery and enabling tailored design through property prediction models and structure-property relationships. Machine learning extends its influence to image processing, improving object detection, classification, and segmentation precision and enabling methods like image generation, revolutionizing the potential of image processing in materials research. The most recent developments show how machine learning can have a transformative impact at the atomic level by enabling precise property prediction and intricate data extraction, representing significant advancements in material understanding and innovation. The review highlights how machine learning has the potential to revolutionize materials research by accelerating discovery, improving performance, and stimulating innovation. It does so while acknowledging obstacles like poor data quality and complicated algorithms. Machine learning offers a wide range of exciting prospects for scientific investigation and technological advancement, positioning it as a powerful force for influencing the future of materials research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助QVQ采纳,获得10
1秒前
biubiufan发布了新的文献求助10
1秒前
1秒前
105发布了新的文献求助30
2秒前
2秒前
田様应助ZHTNL采纳,获得10
3秒前
5秒前
yohana完成签到 ,获得积分10
5秒前
5秒前
biubiufan完成签到,获得积分10
5秒前
6秒前
AAA发布了新的文献求助30
6秒前
8秒前
略略略发布了新的文献求助30
8秒前
lcy完成签到,获得积分10
8秒前
gy1991发布了新的文献求助10
9秒前
Landau发布了新的文献求助10
10秒前
烨无殇发布了新的文献求助10
10秒前
11秒前
11秒前
chy完成签到 ,获得积分10
11秒前
一只五条悟完成签到,获得积分10
12秒前
逃跑的想表白的你猜完成签到,获得积分10
12秒前
12秒前
小乐比发布了新的文献求助10
13秒前
orixero应助alteras采纳,获得10
14秒前
共享精神应助lily采纳,获得10
14秒前
QVQ发布了新的文献求助10
15秒前
百川完成签到,获得积分10
15秒前
一个西藏发布了新的文献求助10
17秒前
yzh1129发布了新的文献求助30
18秒前
Landau完成签到,获得积分10
21秒前
qyp完成签到,获得积分10
21秒前
华仔应助罗克采纳,获得10
21秒前
绿兔子完成签到,获得积分10
22秒前
看不完的文献完成签到,获得积分10
22秒前
懦弱的咖啡豆完成签到,获得积分10
23秒前
失眠无声完成签到,获得积分10
23秒前
23秒前
KUN完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563192
求助须知:如何正确求助?哪些是违规求助? 4647996
关于积分的说明 14683292
捐赠科研通 4590099
什么是DOI,文献DOI怎么找? 2518283
邀请新用户注册赠送积分活动 1491004
关于科研通互助平台的介绍 1462325