Automatic Segmentation and Radiomics for Identification and Activity Assessment of CTE Lesions in Crohn’s Disease

人工智能 分割 卷积神经网络 模式识别(心理学) Sørensen–骰子系数 分类器(UML) 计算机科学 深度学习 机器学习 无线电技术 图像分割
作者
Yankun Gao,Bo Zhang,Dehan Zhao,Shuai Li,Chang Rong,Mingzhai Sun,Xingwang Wu
出处
期刊:Inflammatory Bowel Diseases [Oxford University Press]
被引量:4
标识
DOI:10.1093/ibd/izad285
摘要

The purpose of this article is to develop a deep learning automatic segmentation model for the segmentation of Crohn's disease (CD) lesions in computed tomography enterography (CTE) images. Additionally, the radiomics features extracted from the segmented CD lesions will be analyzed and multiple machine learning classifiers will be built to distinguish CD activity.This was a retrospective study with 2 sets of CTE image data. Segmentation datasets were used to establish nnU-Net neural network's automatic segmentation model. The classification dataset was processed using the automatic segmentation model to obtain segmentation results and extract radiomics features. The most optimal features were then selected to build 5 machine learning classifiers to distinguish CD activity. The performance of the automatic segmentation model was evaluated using the Dice similarity coefficient, while the performance of the machine learning classifier was evaluated using the area under the curve, sensitivity, specificity, and accuracy.The segmentation dataset had 84 CTE examinations of CD patients (mean age 31 ± 13 years , 60 males), and the classification dataset had 193 (mean age 31 ± 12 years , 136 males). The deep learning segmentation model achieved a Dice similarity coefficient of 0.824 on the testing set. The logistic regression model showed the best performance among the 5 classifiers in the testing set, with an area under the curve, sensitivity, specificity, and accuracy of 0.862, 0.697, 0.840, and 0.759, respectively.The automated segmentation model accurately segments CD lesions, and machine learning classifier distinguishes CD activity well. This method can assist radiologists in promptly and precisely evaluating CD activity.The automatic segmentation and radiomics of computed tomography enterography images can assist radiologists in accurately and quickly identifying Crohn’s disease lesions and evaluating Crohn’s disease activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
池鱼完成签到,获得积分10
1秒前
2秒前
如意听安发布了新的文献求助10
3秒前
sandy完成签到,获得积分10
4秒前
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
Kirito应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助吱吱采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得30
4秒前
Owen应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
5秒前
MX应助科研通管家采纳,获得20
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Ava应助科研通管家采纳,获得10
5秒前
6秒前
聪明的灵寒完成签到 ,获得积分10
7秒前
7秒前
7秒前
搜集达人应助饱满小夏采纳,获得30
9秒前
myc641完成签到 ,获得积分10
9秒前
9秒前
11秒前
清爽代双发布了新的文献求助10
12秒前
梦nv孩发布了新的文献求助10
13秒前
suibiao完成签到 ,获得积分10
13秒前
13秒前
可耐的问柳完成签到 ,获得积分10
14秒前
Ag666完成签到,获得积分10
14秒前
14秒前
14秒前
科研通AI5应助jimi采纳,获得10
15秒前
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846453
求助须知:如何正确求助?哪些是违规求助? 3388950
关于积分的说明 10555151
捐赠科研通 3109404
什么是DOI,文献DOI怎么找? 1713694
邀请新用户注册赠送积分活动 824853
科研通“疑难数据库(出版商)”最低求助积分说明 775086