亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evolutionary algorithm incorporating reinforcement learning for energy-conscious flexible job-shop scheduling problem with transportation and setup times

计算机科学 强化学习 作业车间调度 调度(生产过程) 进化算法 数学优化 人工智能 算法 嵌入式系统 数学 布线(电子设计自动化)
作者
Guohui Zhang,Shaofeng Yan,Xiaohui Song,Deyu Zhang,Shenghui Guo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 107974-107974 被引量:33
标识
DOI:10.1016/j.engappai.2024.107974
摘要

Flexible job-shop scheduling is considerably important in the modern intelligent manufacturing factory. In a real job shop, transportation and setup times account for a large percentage of the total processing flow, and with today's companies demanding higher delivery times, the feasibility and punctuality of scheduling will be considerably reduced if these time constraints are ignored. Recently, several companies have become green in their manufacturing processes. However, transportation, setup, and delivery times have rarely been combined with energy efficiency. To solve this problem, we employed an integer programming approach to develop a complete mathematical model of the problem and simultaneously optimized four objectives: maximum completion time, total energy consumption, workload of critical machines, and penalties for earliness/tardiness. Subsequently, an evolutionary algorithm incorporating reinforcement learning was proposed to solve the model. The algorithm had the following features: (1) four initialization strategies were designed to obtain high-quality populations; (2) a reinforcement learning-based parameter-adaptive strategy was proposed to guide the population to select the best parameters; (3) a critical path-based neighborhood structure with transportation and setup times was designed, and according to the objectives of this study, four additional neighborhood structures were designed; (4) a reference point-based non-dominated sorting selection was presented to guide the solution toward the Pareto-optimal front; and (5) an external archive was proposed to enhance the utilization of abandoned historical solutions. Finally, the effectiveness of this algorithm was demonstrated using 33 benchmark instances of variants and comparison experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiqi完成签到,获得积分10
5秒前
科研通AI6.1应助komorebi采纳,获得10
11秒前
12秒前
满满发布了新的文献求助10
19秒前
24秒前
26秒前
40秒前
开心的瘦子完成签到,获得积分10
41秒前
45秒前
Criminology34应助科研通管家采纳,获得10
45秒前
矜持完成签到 ,获得积分10
47秒前
研友_VZG7GZ应助开心的瘦子采纳,获得10
59秒前
斯文败类应助ppppp采纳,获得10
1分钟前
Ava应助polaris采纳,获得30
1分钟前
1分钟前
重庆森林完成签到,获得积分10
2分钟前
2分钟前
emmm发布了新的文献求助10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
ppppp发布了新的文献求助10
2分钟前
2分钟前
polaris完成签到,获得积分10
2分钟前
环走鱼尾纹完成签到 ,获得积分10
2分钟前
polaris发布了新的文献求助30
2分钟前
orixero应助emmm采纳,获得10
2分钟前
在水一方应助悠悠采纳,获得10
2分钟前
3分钟前
悠悠发布了新的文献求助10
3分钟前
悠悠完成签到,获得积分20
3分钟前
丘比特应助喜悦的毛衣采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
monica完成签到 ,获得积分10
4分钟前
饱满含玉完成签到,获得积分10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 520
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5828924
求助须知:如何正确求助?哪些是违规求助? 6038998
关于积分的说明 15575931
捐赠科研通 4948548
什么是DOI,文献DOI怎么找? 2666339
邀请新用户注册赠送积分活动 1611957
关于科研通互助平台的介绍 1566987