Optimizing Train Timetable Under Oversaturated Demand Conditions: A Variable-Splitting Lagrangian Approach for Big-$M$ Constraints

变量(数学) 符号 整数(计算机科学) 整数规划 启发式 数学 计算机科学 数学优化 程序设计语言 算术 数学分析
作者
Xiaopeng Tian,Huimin Niu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 7265-7280 被引量:1
标识
DOI:10.1109/tits.2023.3342048
摘要

This study aims to optimize train timetables with hour-dependent origin-destination passenger demand for an oversaturated high-speed rail corridor, where some passengers may be delayed to the next hour. By introducing arc-based binary variables and assignment-based integer variables in the elaborated space-time network, we formulate the problem under consideration as an integer linear programming model with the objective of minimizing passenger travel time. To transform nonlinear demand loading constraints, multiple sets of big- $M$ constraints linking different types of variables are established equivalently. While relaxing these big- $M$ constraints under the standard Lagrangian decomposition framework, a thorny issue is that the lower bounds are often not ideal due to the existence of big- $M$ values. To tackle this important and common computational challenge, a novel approach is employed to split the arc-based variables into train skip-stopping and departing variables. Furthermore, a series of valid constraints are proposed to augment the decomposed assignment subproblem. With the help of Lagrangian dual information, a dynamic programming heuristic is also developed to generate feasible solutions to the primal problem. Finally, several numerical experiments are conducted to assess the efficiency and effectiveness of the proposed approach. The results show that compared with traditional solution approaches, the proposed approach can obtain satisfactory solutions in acceptable computation times for all the instances, in which the optimality gaps are less than 5% and the travel time is reduced by 17.28% on average.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梵高完成签到,获得积分10
1秒前
2秒前
3秒前
ShiRz发布了新的文献求助10
3秒前
周周完成签到 ,获得积分10
3秒前
。。完成签到 ,获得积分10
5秒前
加油加油发布了新的文献求助30
7秒前
9秒前
Shandongdaxiu发布了新的文献求助10
9秒前
Hello应助幽默的友容采纳,获得10
10秒前
10秒前
12秒前
可靠之玉完成签到,获得积分10
13秒前
叶九幽完成签到,获得积分10
13秒前
虎子完成签到 ,获得积分10
14秒前
长安宁发布了新的文献求助10
16秒前
电击小子完成签到 ,获得积分10
16秒前
彩色映雁发布了新的文献求助20
17秒前
20秒前
科研通AI2S应助VDC采纳,获得30
22秒前
00发布了新的文献求助10
24秒前
Fuckacdemic完成签到 ,获得积分10
26秒前
Laity完成签到,获得积分10
26秒前
27秒前
Owen应助加油加油采纳,获得30
28秒前
Robin完成签到,获得积分20
28秒前
31秒前
32秒前
alltoowell完成签到,获得积分0
37秒前
努力的淼淼完成签到 ,获得积分10
39秒前
小春卷完成签到,获得积分10
42秒前
44秒前
45秒前
46秒前
笨笨芯应助追寻啤酒采纳,获得30
47秒前
48秒前
shjyang发布了新的文献求助10
49秒前
49秒前
VDC发布了新的文献求助30
50秒前
加油加油完成签到,获得积分20
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781253
求助须知:如何正确求助?哪些是违规求助? 3326745
关于积分的说明 10228256
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751